Prove that $frac sin X+sin Y-sin(X+Y)sin X+sin Y+sin(X+Y)=tanfracX2tanfracY2$ [closed]
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Prove that $frac sin X+sin Y-sin(X+Y)sin X+sin Y+sin(X+Y)=tanfracX2tanfracY2$
I tried expanding $frac sin X+sin Y-sin(X+Y)sin X+sin Y+sin(X+Y)$ and expanding $tanfracX2tanfracY2$ and then cross multiplying , but I can't seem to find the answer.
algebra-precalculus trigonometry
closed as off-topic by user21820, Xander Henderson, amWhy, alans, rschwieb Sep 13 at 16:11
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please improve the question by providing additional context, which ideally includes your thoughts on the problem and any attempts you have made to solve it. This information helps others identify where you have difficulties and helps them write answers appropriate to your experience level." â user21820, Xander Henderson, amWhy, alans, rschwieb
add a comment |Â
up vote
0
down vote
favorite
Prove that $frac sin X+sin Y-sin(X+Y)sin X+sin Y+sin(X+Y)=tanfracX2tanfracY2$
I tried expanding $frac sin X+sin Y-sin(X+Y)sin X+sin Y+sin(X+Y)$ and expanding $tanfracX2tanfracY2$ and then cross multiplying , but I can't seem to find the answer.
algebra-precalculus trigonometry
closed as off-topic by user21820, Xander Henderson, amWhy, alans, rschwieb Sep 13 at 16:11
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please improve the question by providing additional context, which ideally includes your thoughts on the problem and any attempts you have made to solve it. This information helps others identify where you have difficulties and helps them write answers appropriate to your experience level." â user21820, Xander Henderson, amWhy, alans, rschwieb
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Prove that $frac sin X+sin Y-sin(X+Y)sin X+sin Y+sin(X+Y)=tanfracX2tanfracY2$
I tried expanding $frac sin X+sin Y-sin(X+Y)sin X+sin Y+sin(X+Y)$ and expanding $tanfracX2tanfracY2$ and then cross multiplying , but I can't seem to find the answer.
algebra-precalculus trigonometry
Prove that $frac sin X+sin Y-sin(X+Y)sin X+sin Y+sin(X+Y)=tanfracX2tanfracY2$
I tried expanding $frac sin X+sin Y-sin(X+Y)sin X+sin Y+sin(X+Y)$ and expanding $tanfracX2tanfracY2$ and then cross multiplying , but I can't seem to find the answer.
algebra-precalculus trigonometry
algebra-precalculus trigonometry
edited Sep 13 at 14:59
user21820
36.3k440142
36.3k440142
asked Sep 13 at 5:38
mampuuu
684
684
closed as off-topic by user21820, Xander Henderson, amWhy, alans, rschwieb Sep 13 at 16:11
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please improve the question by providing additional context, which ideally includes your thoughts on the problem and any attempts you have made to solve it. This information helps others identify where you have difficulties and helps them write answers appropriate to your experience level." â user21820, Xander Henderson, amWhy, alans, rschwieb
closed as off-topic by user21820, Xander Henderson, amWhy, alans, rschwieb Sep 13 at 16:11
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please improve the question by providing additional context, which ideally includes your thoughts on the problem and any attempts you have made to solve it. This information helps others identify where you have difficulties and helps them write answers appropriate to your experience level." â user21820, Xander Henderson, amWhy, alans, rschwieb
add a comment |Â
add a comment |Â
4 Answers
4
active
oldest
votes
up vote
4
down vote
accepted
Write $t=tan(x/2)$ and $u=tan(y/2)$.
Then
$$sin x=frac2t1+t^2,$$
$$sin y=frac2u1+u^2$$
and
$$sin(x+y)=sin xcos y+cos xsin y=frac2t(1-u^2)+2u(1-t^2)(1+t^2)(1+u^2).$$
Therefore
$$sin x+sin ypmsin(x+y)
=frac2t(1+u^2)+2u(1+t^2)pmleft(2t(1-u^2)+2u(1-t^2)right)(1+t^2)(1+u^2).$$
Now expand out both possibilities.
add a comment |Â
up vote
6
down vote
Start with the LHS, use sum-to-product on sin(X)+sin(Y), and the double angle formula on sin(X+Y), the expression is equal to
$$
fracsin(fracX+Y2)cos(fracX-Y2)-sin(fracX+Y2)cos(fracX+Y2)sin(fracX+Y2)cos(fracX-Y2)+sin(fracX+Y2)cos(fracX+Y2)
$$
cancelling sin((X+Y)/2) and use sum-to-product again,
$$
=
fracsinfracX2sinfracY2cosfracX2cosfracY2
$$
which is the RHS.
mathworld.wolfram.com/ProsthaphaeresisFormulas.html
â lab bhattacharjee
Sep 13 at 5:57
add a comment |Â
up vote
4
down vote
Denote: $x=a+b, y=a-b$, then:
$$frac sin (a+b)+sin (a-b)-sin(2a)sin (a+b)+sin (a-b)+sin(2a)=\
fracsin acos b+requirecancelcancelcos asin b+sin acos b-requirecancelcancelcos asin b-sin (2a)sin acos b+requirecancelcancelcos asin b+sin acos b-requirecancelcancelcos asin b+sin (2a)=\
frac2sin acos b-2sin acos a2sin acos b+2sin acos a=\
fraccos b-cos acos b+cos a=\
frac-sin fracb-a2sin fracb+a2cos fracb-a2cos fracb+a2=\
frac-sin (-frac y2)sin (frac x2)cos (-frac y2)cos (frac x2)=\
tanfracX2tanfracY2.$$
add a comment |Â
up vote
1
down vote
beginalign*fracsin x+sin y-sin(x+y)sin x+sin y+sin (x+y)&=dfrac2sindfracx+y2cosdfracx-y2-2sindfracx+y2cos dfracx+y22sindfracx+y2cosdfracx-y2+2sindfracx+y2cos dfracx+y2\&=dfraccosdfracx-y2-cos dfracx+y2cosdfracx-y2+cos dfracx+y2\&=dfrac-2sindfracx2sindfrac-y22cosdfracx2cos dfrac-y2\&=tandfracx2tandfracy2.endalign*
add a comment |Â
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
Write $t=tan(x/2)$ and $u=tan(y/2)$.
Then
$$sin x=frac2t1+t^2,$$
$$sin y=frac2u1+u^2$$
and
$$sin(x+y)=sin xcos y+cos xsin y=frac2t(1-u^2)+2u(1-t^2)(1+t^2)(1+u^2).$$
Therefore
$$sin x+sin ypmsin(x+y)
=frac2t(1+u^2)+2u(1+t^2)pmleft(2t(1-u^2)+2u(1-t^2)right)(1+t^2)(1+u^2).$$
Now expand out both possibilities.
add a comment |Â
up vote
4
down vote
accepted
Write $t=tan(x/2)$ and $u=tan(y/2)$.
Then
$$sin x=frac2t1+t^2,$$
$$sin y=frac2u1+u^2$$
and
$$sin(x+y)=sin xcos y+cos xsin y=frac2t(1-u^2)+2u(1-t^2)(1+t^2)(1+u^2).$$
Therefore
$$sin x+sin ypmsin(x+y)
=frac2t(1+u^2)+2u(1+t^2)pmleft(2t(1-u^2)+2u(1-t^2)right)(1+t^2)(1+u^2).$$
Now expand out both possibilities.
add a comment |Â
up vote
4
down vote
accepted
up vote
4
down vote
accepted
Write $t=tan(x/2)$ and $u=tan(y/2)$.
Then
$$sin x=frac2t1+t^2,$$
$$sin y=frac2u1+u^2$$
and
$$sin(x+y)=sin xcos y+cos xsin y=frac2t(1-u^2)+2u(1-t^2)(1+t^2)(1+u^2).$$
Therefore
$$sin x+sin ypmsin(x+y)
=frac2t(1+u^2)+2u(1+t^2)pmleft(2t(1-u^2)+2u(1-t^2)right)(1+t^2)(1+u^2).$$
Now expand out both possibilities.
Write $t=tan(x/2)$ and $u=tan(y/2)$.
Then
$$sin x=frac2t1+t^2,$$
$$sin y=frac2u1+u^2$$
and
$$sin(x+y)=sin xcos y+cos xsin y=frac2t(1-u^2)+2u(1-t^2)(1+t^2)(1+u^2).$$
Therefore
$$sin x+sin ypmsin(x+y)
=frac2t(1+u^2)+2u(1+t^2)pmleft(2t(1-u^2)+2u(1-t^2)right)(1+t^2)(1+u^2).$$
Now expand out both possibilities.
answered Sep 13 at 5:44
Lord Shark the Unknown
91k955117
91k955117
add a comment |Â
add a comment |Â
up vote
6
down vote
Start with the LHS, use sum-to-product on sin(X)+sin(Y), and the double angle formula on sin(X+Y), the expression is equal to
$$
fracsin(fracX+Y2)cos(fracX-Y2)-sin(fracX+Y2)cos(fracX+Y2)sin(fracX+Y2)cos(fracX-Y2)+sin(fracX+Y2)cos(fracX+Y2)
$$
cancelling sin((X+Y)/2) and use sum-to-product again,
$$
=
fracsinfracX2sinfracY2cosfracX2cosfracY2
$$
which is the RHS.
mathworld.wolfram.com/ProsthaphaeresisFormulas.html
â lab bhattacharjee
Sep 13 at 5:57
add a comment |Â
up vote
6
down vote
Start with the LHS, use sum-to-product on sin(X)+sin(Y), and the double angle formula on sin(X+Y), the expression is equal to
$$
fracsin(fracX+Y2)cos(fracX-Y2)-sin(fracX+Y2)cos(fracX+Y2)sin(fracX+Y2)cos(fracX-Y2)+sin(fracX+Y2)cos(fracX+Y2)
$$
cancelling sin((X+Y)/2) and use sum-to-product again,
$$
=
fracsinfracX2sinfracY2cosfracX2cosfracY2
$$
which is the RHS.
mathworld.wolfram.com/ProsthaphaeresisFormulas.html
â lab bhattacharjee
Sep 13 at 5:57
add a comment |Â
up vote
6
down vote
up vote
6
down vote
Start with the LHS, use sum-to-product on sin(X)+sin(Y), and the double angle formula on sin(X+Y), the expression is equal to
$$
fracsin(fracX+Y2)cos(fracX-Y2)-sin(fracX+Y2)cos(fracX+Y2)sin(fracX+Y2)cos(fracX-Y2)+sin(fracX+Y2)cos(fracX+Y2)
$$
cancelling sin((X+Y)/2) and use sum-to-product again,
$$
=
fracsinfracX2sinfracY2cosfracX2cosfracY2
$$
which is the RHS.
Start with the LHS, use sum-to-product on sin(X)+sin(Y), and the double angle formula on sin(X+Y), the expression is equal to
$$
fracsin(fracX+Y2)cos(fracX-Y2)-sin(fracX+Y2)cos(fracX+Y2)sin(fracX+Y2)cos(fracX-Y2)+sin(fracX+Y2)cos(fracX+Y2)
$$
cancelling sin((X+Y)/2) and use sum-to-product again,
$$
=
fracsinfracX2sinfracY2cosfracX2cosfracY2
$$
which is the RHS.
answered Sep 13 at 5:46
user10354138
2,3626
2,3626
mathworld.wolfram.com/ProsthaphaeresisFormulas.html
â lab bhattacharjee
Sep 13 at 5:57
add a comment |Â
mathworld.wolfram.com/ProsthaphaeresisFormulas.html
â lab bhattacharjee
Sep 13 at 5:57
mathworld.wolfram.com/ProsthaphaeresisFormulas.html
â lab bhattacharjee
Sep 13 at 5:57
mathworld.wolfram.com/ProsthaphaeresisFormulas.html
â lab bhattacharjee
Sep 13 at 5:57
add a comment |Â
up vote
4
down vote
Denote: $x=a+b, y=a-b$, then:
$$frac sin (a+b)+sin (a-b)-sin(2a)sin (a+b)+sin (a-b)+sin(2a)=\
fracsin acos b+requirecancelcancelcos asin b+sin acos b-requirecancelcancelcos asin b-sin (2a)sin acos b+requirecancelcancelcos asin b+sin acos b-requirecancelcancelcos asin b+sin (2a)=\
frac2sin acos b-2sin acos a2sin acos b+2sin acos a=\
fraccos b-cos acos b+cos a=\
frac-sin fracb-a2sin fracb+a2cos fracb-a2cos fracb+a2=\
frac-sin (-frac y2)sin (frac x2)cos (-frac y2)cos (frac x2)=\
tanfracX2tanfracY2.$$
add a comment |Â
up vote
4
down vote
Denote: $x=a+b, y=a-b$, then:
$$frac sin (a+b)+sin (a-b)-sin(2a)sin (a+b)+sin (a-b)+sin(2a)=\
fracsin acos b+requirecancelcancelcos asin b+sin acos b-requirecancelcancelcos asin b-sin (2a)sin acos b+requirecancelcancelcos asin b+sin acos b-requirecancelcancelcos asin b+sin (2a)=\
frac2sin acos b-2sin acos a2sin acos b+2sin acos a=\
fraccos b-cos acos b+cos a=\
frac-sin fracb-a2sin fracb+a2cos fracb-a2cos fracb+a2=\
frac-sin (-frac y2)sin (frac x2)cos (-frac y2)cos (frac x2)=\
tanfracX2tanfracY2.$$
add a comment |Â
up vote
4
down vote
up vote
4
down vote
Denote: $x=a+b, y=a-b$, then:
$$frac sin (a+b)+sin (a-b)-sin(2a)sin (a+b)+sin (a-b)+sin(2a)=\
fracsin acos b+requirecancelcancelcos asin b+sin acos b-requirecancelcancelcos asin b-sin (2a)sin acos b+requirecancelcancelcos asin b+sin acos b-requirecancelcancelcos asin b+sin (2a)=\
frac2sin acos b-2sin acos a2sin acos b+2sin acos a=\
fraccos b-cos acos b+cos a=\
frac-sin fracb-a2sin fracb+a2cos fracb-a2cos fracb+a2=\
frac-sin (-frac y2)sin (frac x2)cos (-frac y2)cos (frac x2)=\
tanfracX2tanfracY2.$$
Denote: $x=a+b, y=a-b$, then:
$$frac sin (a+b)+sin (a-b)-sin(2a)sin (a+b)+sin (a-b)+sin(2a)=\
fracsin acos b+requirecancelcancelcos asin b+sin acos b-requirecancelcancelcos asin b-sin (2a)sin acos b+requirecancelcancelcos asin b+sin acos b-requirecancelcancelcos asin b+sin (2a)=\
frac2sin acos b-2sin acos a2sin acos b+2sin acos a=\
fraccos b-cos acos b+cos a=\
frac-sin fracb-a2sin fracb+a2cos fracb-a2cos fracb+a2=\
frac-sin (-frac y2)sin (frac x2)cos (-frac y2)cos (frac x2)=\
tanfracX2tanfracY2.$$
answered Sep 13 at 8:06
farruhota
15.9k2734
15.9k2734
add a comment |Â
add a comment |Â
up vote
1
down vote
beginalign*fracsin x+sin y-sin(x+y)sin x+sin y+sin (x+y)&=dfrac2sindfracx+y2cosdfracx-y2-2sindfracx+y2cos dfracx+y22sindfracx+y2cosdfracx-y2+2sindfracx+y2cos dfracx+y2\&=dfraccosdfracx-y2-cos dfracx+y2cosdfracx-y2+cos dfracx+y2\&=dfrac-2sindfracx2sindfrac-y22cosdfracx2cos dfrac-y2\&=tandfracx2tandfracy2.endalign*
add a comment |Â
up vote
1
down vote
beginalign*fracsin x+sin y-sin(x+y)sin x+sin y+sin (x+y)&=dfrac2sindfracx+y2cosdfracx-y2-2sindfracx+y2cos dfracx+y22sindfracx+y2cosdfracx-y2+2sindfracx+y2cos dfracx+y2\&=dfraccosdfracx-y2-cos dfracx+y2cosdfracx-y2+cos dfracx+y2\&=dfrac-2sindfracx2sindfrac-y22cosdfracx2cos dfrac-y2\&=tandfracx2tandfracy2.endalign*
add a comment |Â
up vote
1
down vote
up vote
1
down vote
beginalign*fracsin x+sin y-sin(x+y)sin x+sin y+sin (x+y)&=dfrac2sindfracx+y2cosdfracx-y2-2sindfracx+y2cos dfracx+y22sindfracx+y2cosdfracx-y2+2sindfracx+y2cos dfracx+y2\&=dfraccosdfracx-y2-cos dfracx+y2cosdfracx-y2+cos dfracx+y2\&=dfrac-2sindfracx2sindfrac-y22cosdfracx2cos dfrac-y2\&=tandfracx2tandfracy2.endalign*
beginalign*fracsin x+sin y-sin(x+y)sin x+sin y+sin (x+y)&=dfrac2sindfracx+y2cosdfracx-y2-2sindfracx+y2cos dfracx+y22sindfracx+y2cosdfracx-y2+2sindfracx+y2cos dfracx+y2\&=dfraccosdfracx-y2-cos dfracx+y2cosdfracx-y2+cos dfracx+y2\&=dfrac-2sindfracx2sindfrac-y22cosdfracx2cos dfrac-y2\&=tandfracx2tandfracy2.endalign*
answered Sep 13 at 6:36
mengdie1982
3,817216
3,817216
add a comment |Â
add a comment |Â