Crystallographic point group


In crystallography, a crystallographic point group is a set of symmetry operations, like rotations or reflections, that leave a central point fixed while moving the edges and faces of the crystal to the positions of features of the same size and shape. For a periodic crystal (as opposed to a quasicrystal), the group must also maintain the three-dimensional translational symmetry that defines crystallinity. The geometric properties of a crystal must look exactly the same before and after applying any of the operations in its point group. In the classification of crystals, each point group defines a so-called crystal class.


There are infinitely many three-dimensional point groups. However, the crystallographic restriction on the general point groups results in there being only 32 crystallographic point groups. These 32 point groups are one-and-the-same as the 32 types of morphological (external) crystalline symmetries derived in 1830 by Johann Friedrich Christian Hessel from a consideration of observed crystal forms.


The point group of a crystal determines, among other things, the directional variation of physical properties that arise from its structure, including optical properties such as birefringency, or electro-optical features such as the Pockels effect.




Contents





  • 1 Notation

    • 1.1 Schoenflies notation


    • 1.2 Hermann–Mauguin notation


    • 1.3 The correspondence between different notations



  • 2 See also


  • 3 References


  • 4 External links




Notation


The point groups are named according to their component symmetries. There are several standard notations used by crystallographers, mineralogists, and physicists.


For the correspondence of the two systems below, see crystal system.



Schoenflies notation




In Schoenflies notation, point groups are denoted by a letter symbol with a subscript. The symbols used in crystallography mean the following:



  • Cn (for cyclic) indicates that the group has an n-fold rotation axis. Cnh is Cn with the addition of a mirror (reflection) plane perpendicular to the axis of rotation. Cnv is Cn with the addition of n mirror planes parallel to the axis of rotation.


  • S2n (for Spiegel, German for mirror) denotes a group with only a 2n-fold rotation-reflection axis.


  • Dn (for dihedral, or two-sided) indicates that the group has an n-fold rotation axis plus n twofold axes perpendicular to that axis. Dnh has, in addition, a mirror plane perpendicular to the n-fold axis. Dnd has, in addition to the elements of Dn, mirror planes parallel to the n-fold axis.

  • The letter T (for tetrahedron) indicates that the group has the symmetry of a tetrahedron. Td includes improper rotation operations, T excludes improper rotation operations, and Th is T with the addition of an inversion.

  • The letter O (for octahedron) indicates that the group has the symmetry of an octahedron (or cube), with (Oh) or without (O) improper operations (those that change handedness).

Due to the crystallographic restriction theorem, n = 1, 2, 3, 4, or 6 in 2- or 3-dimensional space.


















































n
1
2
3
4
6

Cn

C1

C2

C3

C4

C6

Cnv

C1v=C1h

C2v

C3v

C4v

C6v

Cnh

C1h

C2h

C3h

C4h

C6h

Dn

D1=C2

D2

D3

D4

D6

Dnh

D1h=C2v

D2h

D3h

D4h

D6h

Dnd

D1d=C2h

D2d

D3d

D4d

D6d

S2n

S2

S4

S6

S8

S12

D4d and D6d are actually forbidden because they contain improper rotations with n=8 and 12 respectively. The 27 point groups in the table plus T, Td, Th, O and Oh constitute 32 crystallographic point groups.



Hermann–Mauguin notation



An abbreviated form of the Hermann–Mauguin notation commonly used for space groups also serves to describe crystallographic point groups. Group names are






























































Class
Group names

Group-subgroup relationship (3D).png

Cubic
23m3
432
43m
m3m

Hexagonal
66
6m
6226mm
6m2

6mmm

Trigonal
33323m
3m


Tetragonal
44
4m
4224mm
42m

4mmm

Orthorhombic
222mm2mmm

Monoclinic
2
2m
m

Triclinic
11
Subgroup relations of the 32 crystallographic point groups
(rows represent group orders from bottom to top as: 1,2,3,4,6,8,12,16,24, and 48.)


The correspondence between different notations



















































































































































































































































Crystal system

Hermann-Mauguin
Shubnikov[1]
Schoenflies

Orbifold

Coxeter
Order
(full)
(short)

Triclinic
111 displaystyle 1 1 C111[ ]+1
112~displaystyle tilde 2tilde2Ci = S2×[2+,2+]2

Monoclinic
222 displaystyle 2 2 C222[2]+2
mmm displaystyle m m Cs = C1h*[ ]2
2mdisplaystyle tfrac 2mtfrac2m2/m2:m displaystyle 2:m 2:m C2h2*[2,2+]4

Orthorhombic
2222222:2 displaystyle 2:2 2:2 D2 = V222[2,2]+4
mm2mm22⋅m displaystyle 2cdot m 2 cdot m C2v*22[2]4
2m2m2mdisplaystyle tfrac 2mtfrac 2mtfrac 2mtfrac2mtfrac2mtfrac2mmmmm⋅2:m displaystyle mcdot 2:m m cdot 2:m
D2h = Vh
*222[2,2]8

Tetragonal
444 displaystyle 4 4 C444[4]+4
44
4~displaystyle tilde 4tilde4
S4[2+,4+]4
4mdisplaystyle tfrac 4mtfrac4m4/m4:m displaystyle 4:m 4:m C4h4*[2,4+]8
4224224:2 displaystyle 4:2 4:2 D4422[4,2]+8
4mm4mm4⋅m displaystyle 4cdot m 4 cdot m C4v*44[4]8

42m

42m
4~⋅mdisplaystyle tilde 4cdot mtilde4cdot m
D2d = Vd
2*2[2+,4]8
4m2m2mdisplaystyle tfrac 4mtfrac 2mtfrac 2mtfrac4mtfrac2mtfrac2m4/mmmm⋅4:m displaystyle mcdot 4:m m cdot 4:m D4h*422[4,2]16

Trigonal
333 displaystyle 3 3 C333[3]+3
336~displaystyle tilde 6tilde6C3i = S6[2+,6+]6
32323:2 displaystyle 3:2 3:2 D3322[3,2]+6
3m3m3⋅m displaystyle 3cdot m 3 cdot m C3v*33[3]6

32mdisplaystyle tfrac 2mtfrac2m

3m
6~⋅mdisplaystyle tilde 6cdot mtilde6cdot mD3d2*3[2+,6]12

Hexagonal
666 displaystyle 6 6 C666[6]+6
663:m displaystyle 3:m 3:m C3h3*[2,3+]6
6mdisplaystyle tfrac 6mtfrac6m6/m6:m displaystyle 6:m 6:m C6h6*[2,6+]12
6226226:2 displaystyle 6:2 6:2 D6622[6,2]+12
6mm6mm6⋅m displaystyle 6cdot m 6 cdot m C6v*66[6]12

6m2

6m2
m⋅3:m displaystyle mcdot 3:m m cdot 3:m D3h*322[3,2]12
6m2m2mdisplaystyle tfrac 6mtfrac 2mtfrac 2mtfrac6mtfrac2mtfrac2m6/mmmm⋅6:m displaystyle mcdot 6:m m cdot 6:m D6h*622[6,2]24

Cubic
23233/2 displaystyle 3/2 3/2 T332[3,3]+12

2mdisplaystyle tfrac 2mtfrac2m3
m3
6~/2displaystyle tilde 6/2tilde6/2Th3*2[3+,4]24
4324323/4 displaystyle 3/4 3/4 O432[4,3]+24

43m

43m
3/4~displaystyle 3/tilde 43/tilde4Td*332[3,3]24

4mdisplaystyle tfrac 4mtfrac4m32mdisplaystyle tfrac 2mtfrac2m
m3m6~/4displaystyle tilde 6/4tilde6/4Oh*432[4,3]48


See also


  • Molecular symmetry

  • Point group

  • Space group

  • Point groups in three dimensions

  • Crystal system


References



  1. ^ "Archived copy". Archived from the original on 2013-07-04. Retrieved 2011-11-25.CS1 maint: Archived copy as title (link).mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em



External links




  • Point-group symbols in International Tables for Crystallography (2006). Vol. A, ch. 12.1, pp. 818-820

  • Names and symbols of the 32 crystal classes in International Tables for Crystallography (2006). Vol. A, ch. 10.1, p. 794

  • Pictorial overview of the 32 groups


Popular posts from this blog

How to check contact read email or not when send email to Individual?

How many registers does an x86_64 CPU actually have?

Nur Jahan