Limit to compare growth of function
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
I wanted to compare growth of two functions
$F_1:n^,lg,lg n$
$F_2:(3/2)^n$
$lim_n to infty fracn^lglg n(3/2)^n$
After differentiating it $lg , lg n$ times I get
$lim_n to infty frac(lglg n)!(lg(3/2))^lglg n(3/2)^n$
How do I proceed forward?
limits
add a comment |
up vote
2
down vote
favorite
I wanted to compare growth of two functions
$F_1:n^,lg,lg n$
$F_2:(3/2)^n$
$lim_n to infty fracn^lglg n(3/2)^n$
After differentiating it $lg , lg n$ times I get
$lim_n to infty frac(lglg n)!(lg(3/2))^lglg n(3/2)^n$
How do I proceed forward?
limits
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
I wanted to compare growth of two functions
$F_1:n^,lg,lg n$
$F_2:(3/2)^n$
$lim_n to infty fracn^lglg n(3/2)^n$
After differentiating it $lg , lg n$ times I get
$lim_n to infty frac(lglg n)!(lg(3/2))^lglg n(3/2)^n$
How do I proceed forward?
limits
I wanted to compare growth of two functions
$F_1:n^,lg,lg n$
$F_2:(3/2)^n$
$lim_n to infty fracn^lglg n(3/2)^n$
After differentiating it $lg , lg n$ times I get
$lim_n to infty frac(lglg n)!(lg(3/2))^lglg n(3/2)^n$
How do I proceed forward?
limits
limits
edited yesterday
user376343
2,1441716
2,1441716
asked 2 days ago
user3767495
1348
1348
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
3
down vote
$(ln ln n) (ln n) - n ln (3/2)=n[frac (ln ln n) (ln n) n - ln (3/2)] to -infty$ because $frac (ln ln n) (ln n) n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^(ln ln n) (ln n) /(3/2)^n to 0$. This is same as $frac n^ln ln n (3/2)^n to 0$
Same time, same answer !
– Claude Leibovici
yesterday
add a comment |
up vote
3
down vote
Consider
$$y=fracF_1F_2=left(frac32right)^-n n^log (log (n))$$ and take logarithms
$$log(y)=log (log (n))times log(n)-nlog left(frac32right)=nleft(log (log (n))times frac log(n)n-log left(frac32right) right)$$ When $n to infty$, since $frac log(n)n to0 $, you have
$$log(y) sim -n log left(frac32right) to -inftyimplies y=e^log(n) to 0$$
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
$(ln ln n) (ln n) - n ln (3/2)=n[frac (ln ln n) (ln n) n - ln (3/2)] to -infty$ because $frac (ln ln n) (ln n) n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^(ln ln n) (ln n) /(3/2)^n to 0$. This is same as $frac n^ln ln n (3/2)^n to 0$
Same time, same answer !
– Claude Leibovici
yesterday
add a comment |
up vote
3
down vote
$(ln ln n) (ln n) - n ln (3/2)=n[frac (ln ln n) (ln n) n - ln (3/2)] to -infty$ because $frac (ln ln n) (ln n) n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^(ln ln n) (ln n) /(3/2)^n to 0$. This is same as $frac n^ln ln n (3/2)^n to 0$
Same time, same answer !
– Claude Leibovici
yesterday
add a comment |
up vote
3
down vote
up vote
3
down vote
$(ln ln n) (ln n) - n ln (3/2)=n[frac (ln ln n) (ln n) n - ln (3/2)] to -infty$ because $frac (ln ln n) (ln n) n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^(ln ln n) (ln n) /(3/2)^n to 0$. This is same as $frac n^ln ln n (3/2)^n to 0$
$(ln ln n) (ln n) - n ln (3/2)=n[frac (ln ln n) (ln n) n - ln (3/2)] to -infty$ because $frac (ln ln n) (ln n) n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^(ln ln n) (ln n) /(3/2)^n to 0$. This is same as $frac n^ln ln n (3/2)^n to 0$
answered yesterday
Kavi Rama Murthy
39.3k31748
39.3k31748
Same time, same answer !
– Claude Leibovici
yesterday
add a comment |
Same time, same answer !
– Claude Leibovici
yesterday
Same time, same answer !
– Claude Leibovici
yesterday
Same time, same answer !
– Claude Leibovici
yesterday
add a comment |
up vote
3
down vote
Consider
$$y=fracF_1F_2=left(frac32right)^-n n^log (log (n))$$ and take logarithms
$$log(y)=log (log (n))times log(n)-nlog left(frac32right)=nleft(log (log (n))times frac log(n)n-log left(frac32right) right)$$ When $n to infty$, since $frac log(n)n to0 $, you have
$$log(y) sim -n log left(frac32right) to -inftyimplies y=e^log(n) to 0$$
add a comment |
up vote
3
down vote
Consider
$$y=fracF_1F_2=left(frac32right)^-n n^log (log (n))$$ and take logarithms
$$log(y)=log (log (n))times log(n)-nlog left(frac32right)=nleft(log (log (n))times frac log(n)n-log left(frac32right) right)$$ When $n to infty$, since $frac log(n)n to0 $, you have
$$log(y) sim -n log left(frac32right) to -inftyimplies y=e^log(n) to 0$$
add a comment |
up vote
3
down vote
up vote
3
down vote
Consider
$$y=fracF_1F_2=left(frac32right)^-n n^log (log (n))$$ and take logarithms
$$log(y)=log (log (n))times log(n)-nlog left(frac32right)=nleft(log (log (n))times frac log(n)n-log left(frac32right) right)$$ When $n to infty$, since $frac log(n)n to0 $, you have
$$log(y) sim -n log left(frac32right) to -inftyimplies y=e^log(n) to 0$$
Consider
$$y=fracF_1F_2=left(frac32right)^-n n^log (log (n))$$ and take logarithms
$$log(y)=log (log (n))times log(n)-nlog left(frac32right)=nleft(log (log (n))times frac log(n)n-log left(frac32right) right)$$ When $n to infty$, since $frac log(n)n to0 $, you have
$$log(y) sim -n log left(frac32right) to -inftyimplies y=e^log(n) to 0$$
answered yesterday
Claude Leibovici
116k1156131
116k1156131
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999277%2flimit-to-compare-growth-of-function%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown