Limit to compare growth of function

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite












I wanted to compare growth of two functions



$F_1:n^,lg,lg n$



$F_2:(3/2)^n$



$lim_n to infty fracn^lglg n(3/2)^n$



After differentiating it $lg , lg n$ times I get



$lim_n to infty frac(lglg n)!(lg(3/2))^lglg n(3/2)^n$



How do I proceed forward?










share|cite|improve this question



























    up vote
    2
    down vote

    favorite












    I wanted to compare growth of two functions



    $F_1:n^,lg,lg n$



    $F_2:(3/2)^n$



    $lim_n to infty fracn^lglg n(3/2)^n$



    After differentiating it $lg , lg n$ times I get



    $lim_n to infty frac(lglg n)!(lg(3/2))^lglg n(3/2)^n$



    How do I proceed forward?










    share|cite|improve this question

























      up vote
      2
      down vote

      favorite









      up vote
      2
      down vote

      favorite











      I wanted to compare growth of two functions



      $F_1:n^,lg,lg n$



      $F_2:(3/2)^n$



      $lim_n to infty fracn^lglg n(3/2)^n$



      After differentiating it $lg , lg n$ times I get



      $lim_n to infty frac(lglg n)!(lg(3/2))^lglg n(3/2)^n$



      How do I proceed forward?










      share|cite|improve this question















      I wanted to compare growth of two functions



      $F_1:n^,lg,lg n$



      $F_2:(3/2)^n$



      $lim_n to infty fracn^lglg n(3/2)^n$



      After differentiating it $lg , lg n$ times I get



      $lim_n to infty frac(lglg n)!(lg(3/2))^lglg n(3/2)^n$



      How do I proceed forward?







      limits






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited yesterday









      user376343

      2,1441716




      2,1441716










      asked 2 days ago









      user3767495

      1348




      1348




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          3
          down vote













          $(ln ln n) (ln n) - n ln (3/2)=n[frac (ln ln n) (ln n) n - ln (3/2)] to -infty$ because $frac (ln ln n) (ln n) n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^(ln ln n) (ln n) /(3/2)^n to 0$. This is same as $frac n^ln ln n (3/2)^n to 0$






          share|cite|improve this answer




















          • Same time, same answer !
            – Claude Leibovici
            yesterday

















          up vote
          3
          down vote













          Consider
          $$y=fracF_1F_2=left(frac32right)^-n n^log (log (n))$$ and take logarithms
          $$log(y)=log (log (n))times log(n)-nlog left(frac32right)=nleft(log (log (n))times frac log(n)n-log left(frac32right) right)$$ When $n to infty$, since $frac log(n)n to0 $, you have
          $$log(y) sim -n log left(frac32right) to -inftyimplies y=e^log(n) to 0$$






          share|cite|improve this answer




















            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999277%2flimit-to-compare-growth-of-function%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            3
            down vote













            $(ln ln n) (ln n) - n ln (3/2)=n[frac (ln ln n) (ln n) n - ln (3/2)] to -infty$ because $frac (ln ln n) (ln n) n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^(ln ln n) (ln n) /(3/2)^n to 0$. This is same as $frac n^ln ln n (3/2)^n to 0$






            share|cite|improve this answer




















            • Same time, same answer !
              – Claude Leibovici
              yesterday














            up vote
            3
            down vote













            $(ln ln n) (ln n) - n ln (3/2)=n[frac (ln ln n) (ln n) n - ln (3/2)] to -infty$ because $frac (ln ln n) (ln n) n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^(ln ln n) (ln n) /(3/2)^n to 0$. This is same as $frac n^ln ln n (3/2)^n to 0$






            share|cite|improve this answer




















            • Same time, same answer !
              – Claude Leibovici
              yesterday












            up vote
            3
            down vote










            up vote
            3
            down vote









            $(ln ln n) (ln n) - n ln (3/2)=n[frac (ln ln n) (ln n) n - ln (3/2)] to -infty$ because $frac (ln ln n) (ln n) n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^(ln ln n) (ln n) /(3/2)^n to 0$. This is same as $frac n^ln ln n (3/2)^n to 0$






            share|cite|improve this answer












            $(ln ln n) (ln n) - n ln (3/2)=n[frac (ln ln n) (ln n) n - ln (3/2)] to -infty$ because $frac (ln ln n) (ln n) n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^(ln ln n) (ln n) /(3/2)^n to 0$. This is same as $frac n^ln ln n (3/2)^n to 0$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered yesterday









            Kavi Rama Murthy

            39.3k31748




            39.3k31748











            • Same time, same answer !
              – Claude Leibovici
              yesterday
















            • Same time, same answer !
              – Claude Leibovici
              yesterday















            Same time, same answer !
            – Claude Leibovici
            yesterday




            Same time, same answer !
            – Claude Leibovici
            yesterday










            up vote
            3
            down vote













            Consider
            $$y=fracF_1F_2=left(frac32right)^-n n^log (log (n))$$ and take logarithms
            $$log(y)=log (log (n))times log(n)-nlog left(frac32right)=nleft(log (log (n))times frac log(n)n-log left(frac32right) right)$$ When $n to infty$, since $frac log(n)n to0 $, you have
            $$log(y) sim -n log left(frac32right) to -inftyimplies y=e^log(n) to 0$$






            share|cite|improve this answer
























              up vote
              3
              down vote













              Consider
              $$y=fracF_1F_2=left(frac32right)^-n n^log (log (n))$$ and take logarithms
              $$log(y)=log (log (n))times log(n)-nlog left(frac32right)=nleft(log (log (n))times frac log(n)n-log left(frac32right) right)$$ When $n to infty$, since $frac log(n)n to0 $, you have
              $$log(y) sim -n log left(frac32right) to -inftyimplies y=e^log(n) to 0$$






              share|cite|improve this answer






















                up vote
                3
                down vote










                up vote
                3
                down vote









                Consider
                $$y=fracF_1F_2=left(frac32right)^-n n^log (log (n))$$ and take logarithms
                $$log(y)=log (log (n))times log(n)-nlog left(frac32right)=nleft(log (log (n))times frac log(n)n-log left(frac32right) right)$$ When $n to infty$, since $frac log(n)n to0 $, you have
                $$log(y) sim -n log left(frac32right) to -inftyimplies y=e^log(n) to 0$$






                share|cite|improve this answer












                Consider
                $$y=fracF_1F_2=left(frac32right)^-n n^log (log (n))$$ and take logarithms
                $$log(y)=log (log (n))times log(n)-nlog left(frac32right)=nleft(log (log (n))times frac log(n)n-log left(frac32right) right)$$ When $n to infty$, since $frac log(n)n to0 $, you have
                $$log(y) sim -n log left(frac32right) to -inftyimplies y=e^log(n) to 0$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered yesterday









                Claude Leibovici

                116k1156131




                116k1156131



























                     

                    draft saved


                    draft discarded















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999277%2flimit-to-compare-growth-of-function%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown






                    Popular posts from this blog

                    How to check contact read email or not when send email to Individual?

                    Displaying single band from multi-band raster using QGIS

                    How many registers does an x86_64 CPU actually have?