Has this I.V.P. unique solution?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
9
down vote

favorite
2












I know
$$begincases y’=|y|\ y(0)=0 endcases $$
Has the solution $yequiv 0$... does it have another?



The question is about the theorem of existence and uniqueness because $partial_y f(x,y)$ is not continuous










share|cite|improve this question

























    up vote
    9
    down vote

    favorite
    2












    I know
    $$begincases y’=|y|\ y(0)=0 endcases $$
    Has the solution $yequiv 0$... does it have another?



    The question is about the theorem of existence and uniqueness because $partial_y f(x,y)$ is not continuous










    share|cite|improve this question























      up vote
      9
      down vote

      favorite
      2









      up vote
      9
      down vote

      favorite
      2






      2





      I know
      $$begincases y’=|y|\ y(0)=0 endcases $$
      Has the solution $yequiv 0$... does it have another?



      The question is about the theorem of existence and uniqueness because $partial_y f(x,y)$ is not continuous










      share|cite|improve this question













      I know
      $$begincases y’=|y|\ y(0)=0 endcases $$
      Has the solution $yequiv 0$... does it have another?



      The question is about the theorem of existence and uniqueness because $partial_y f(x,y)$ is not continuous







      differential-equations






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Aug 17 at 3:35









      Rubén Tobar

      1046




      1046




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          10
          down vote



          accepted










          With



          $f(y) = vert y vert, tag 1$



          we have



          $vert f(y_1) - f(y_2) vert = vert vert y_1 vert - vert y_2 vert vert le vert y_1 - y_2 vert, tag 2$



          which shows that $f(y) = vert y vert$ is Lipschitz continuous with Lipschitz constant $1$; therefore by the Picard-Lindelof theorem, the equation



          $dot y = vert y vert tag 3$



          has a unique solution in some interval about any initial point $y_0 = y(t_0)$. So the only solution with $y(0) = 0$ is identically zero, $y(t) equiv 0$.



          This shouldn't really come as too much of a surprise since $vert 0 vert = 0$, so $0$ is an equilibrium of (3).



          Finally, we don't need $f(y)$ differentiable, merely Lipschitz continuous, for existence and uniqueness to apply.



          Note Added in Edit, Friday 17 August 2018 11:14 PM PST: To really flesh this answer out, we should probably also show that the unique solution $y(t) equiv 0$ on an interval about $0$ extends uniquely to $(-infty, infty)$, but I'm leaving this discussion for a later date. End of Note.






          share|cite|improve this answer





























            up vote
            1
            down vote













            Direct proof: any solution $y$ will be nondecreasing as $y'(x) = |y(x)|ge 0$. Then $y(x)ge 0$ for $xge 0$ and $y'(x) = y(x)$ for $xge 0$. Integrating,
            $$y(x) = y(x) - y(0) = int_0^x y = 0 + int_0^x y.$$
            Now, applying the Gronwall lemma, $y(x)le 0$ for $xge 0$.



            EDIT: even more direct (Gronwall-less) proof.



            Take $x_0in(0,1)$. Integrating as before and using that $y$ is nondecreasing,
            $$y(x_0) = int_0^x_0 yle x_0,y(x_0)implies y(x_0) = 0,$$
            i.e., $yequiv 0$ in $[0,1)$, so in $[0,1]$ by continuity. The same argument works in $[1,2]$, $[2,3]$,...






            share|cite|improve this answer






















              Your Answer




              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: false,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













               

              draft saved


              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2885376%2fhas-this-i-v-p-unique-solution%23new-answer', 'question_page');

              );

              Post as a guest






























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              10
              down vote



              accepted










              With



              $f(y) = vert y vert, tag 1$



              we have



              $vert f(y_1) - f(y_2) vert = vert vert y_1 vert - vert y_2 vert vert le vert y_1 - y_2 vert, tag 2$



              which shows that $f(y) = vert y vert$ is Lipschitz continuous with Lipschitz constant $1$; therefore by the Picard-Lindelof theorem, the equation



              $dot y = vert y vert tag 3$



              has a unique solution in some interval about any initial point $y_0 = y(t_0)$. So the only solution with $y(0) = 0$ is identically zero, $y(t) equiv 0$.



              This shouldn't really come as too much of a surprise since $vert 0 vert = 0$, so $0$ is an equilibrium of (3).



              Finally, we don't need $f(y)$ differentiable, merely Lipschitz continuous, for existence and uniqueness to apply.



              Note Added in Edit, Friday 17 August 2018 11:14 PM PST: To really flesh this answer out, we should probably also show that the unique solution $y(t) equiv 0$ on an interval about $0$ extends uniquely to $(-infty, infty)$, but I'm leaving this discussion for a later date. End of Note.






              share|cite|improve this answer


























                up vote
                10
                down vote



                accepted










                With



                $f(y) = vert y vert, tag 1$



                we have



                $vert f(y_1) - f(y_2) vert = vert vert y_1 vert - vert y_2 vert vert le vert y_1 - y_2 vert, tag 2$



                which shows that $f(y) = vert y vert$ is Lipschitz continuous with Lipschitz constant $1$; therefore by the Picard-Lindelof theorem, the equation



                $dot y = vert y vert tag 3$



                has a unique solution in some interval about any initial point $y_0 = y(t_0)$. So the only solution with $y(0) = 0$ is identically zero, $y(t) equiv 0$.



                This shouldn't really come as too much of a surprise since $vert 0 vert = 0$, so $0$ is an equilibrium of (3).



                Finally, we don't need $f(y)$ differentiable, merely Lipschitz continuous, for existence and uniqueness to apply.



                Note Added in Edit, Friday 17 August 2018 11:14 PM PST: To really flesh this answer out, we should probably also show that the unique solution $y(t) equiv 0$ on an interval about $0$ extends uniquely to $(-infty, infty)$, but I'm leaving this discussion for a later date. End of Note.






                share|cite|improve this answer
























                  up vote
                  10
                  down vote



                  accepted







                  up vote
                  10
                  down vote



                  accepted






                  With



                  $f(y) = vert y vert, tag 1$



                  we have



                  $vert f(y_1) - f(y_2) vert = vert vert y_1 vert - vert y_2 vert vert le vert y_1 - y_2 vert, tag 2$



                  which shows that $f(y) = vert y vert$ is Lipschitz continuous with Lipschitz constant $1$; therefore by the Picard-Lindelof theorem, the equation



                  $dot y = vert y vert tag 3$



                  has a unique solution in some interval about any initial point $y_0 = y(t_0)$. So the only solution with $y(0) = 0$ is identically zero, $y(t) equiv 0$.



                  This shouldn't really come as too much of a surprise since $vert 0 vert = 0$, so $0$ is an equilibrium of (3).



                  Finally, we don't need $f(y)$ differentiable, merely Lipschitz continuous, for existence and uniqueness to apply.



                  Note Added in Edit, Friday 17 August 2018 11:14 PM PST: To really flesh this answer out, we should probably also show that the unique solution $y(t) equiv 0$ on an interval about $0$ extends uniquely to $(-infty, infty)$, but I'm leaving this discussion for a later date. End of Note.






                  share|cite|improve this answer














                  With



                  $f(y) = vert y vert, tag 1$



                  we have



                  $vert f(y_1) - f(y_2) vert = vert vert y_1 vert - vert y_2 vert vert le vert y_1 - y_2 vert, tag 2$



                  which shows that $f(y) = vert y vert$ is Lipschitz continuous with Lipschitz constant $1$; therefore by the Picard-Lindelof theorem, the equation



                  $dot y = vert y vert tag 3$



                  has a unique solution in some interval about any initial point $y_0 = y(t_0)$. So the only solution with $y(0) = 0$ is identically zero, $y(t) equiv 0$.



                  This shouldn't really come as too much of a surprise since $vert 0 vert = 0$, so $0$ is an equilibrium of (3).



                  Finally, we don't need $f(y)$ differentiable, merely Lipschitz continuous, for existence and uniqueness to apply.



                  Note Added in Edit, Friday 17 August 2018 11:14 PM PST: To really flesh this answer out, we should probably also show that the unique solution $y(t) equiv 0$ on an interval about $0$ extends uniquely to $(-infty, infty)$, but I'm leaving this discussion for a later date. End of Note.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Aug 18 at 6:16

























                  answered Aug 17 at 3:46









                  Robert Lewis

                  38.8k22358




                  38.8k22358




















                      up vote
                      1
                      down vote













                      Direct proof: any solution $y$ will be nondecreasing as $y'(x) = |y(x)|ge 0$. Then $y(x)ge 0$ for $xge 0$ and $y'(x) = y(x)$ for $xge 0$. Integrating,
                      $$y(x) = y(x) - y(0) = int_0^x y = 0 + int_0^x y.$$
                      Now, applying the Gronwall lemma, $y(x)le 0$ for $xge 0$.



                      EDIT: even more direct (Gronwall-less) proof.



                      Take $x_0in(0,1)$. Integrating as before and using that $y$ is nondecreasing,
                      $$y(x_0) = int_0^x_0 yle x_0,y(x_0)implies y(x_0) = 0,$$
                      i.e., $yequiv 0$ in $[0,1)$, so in $[0,1]$ by continuity. The same argument works in $[1,2]$, $[2,3]$,...






                      share|cite|improve this answer


























                        up vote
                        1
                        down vote













                        Direct proof: any solution $y$ will be nondecreasing as $y'(x) = |y(x)|ge 0$. Then $y(x)ge 0$ for $xge 0$ and $y'(x) = y(x)$ for $xge 0$. Integrating,
                        $$y(x) = y(x) - y(0) = int_0^x y = 0 + int_0^x y.$$
                        Now, applying the Gronwall lemma, $y(x)le 0$ for $xge 0$.



                        EDIT: even more direct (Gronwall-less) proof.



                        Take $x_0in(0,1)$. Integrating as before and using that $y$ is nondecreasing,
                        $$y(x_0) = int_0^x_0 yle x_0,y(x_0)implies y(x_0) = 0,$$
                        i.e., $yequiv 0$ in $[0,1)$, so in $[0,1]$ by continuity. The same argument works in $[1,2]$, $[2,3]$,...






                        share|cite|improve this answer
























                          up vote
                          1
                          down vote










                          up vote
                          1
                          down vote









                          Direct proof: any solution $y$ will be nondecreasing as $y'(x) = |y(x)|ge 0$. Then $y(x)ge 0$ for $xge 0$ and $y'(x) = y(x)$ for $xge 0$. Integrating,
                          $$y(x) = y(x) - y(0) = int_0^x y = 0 + int_0^x y.$$
                          Now, applying the Gronwall lemma, $y(x)le 0$ for $xge 0$.



                          EDIT: even more direct (Gronwall-less) proof.



                          Take $x_0in(0,1)$. Integrating as before and using that $y$ is nondecreasing,
                          $$y(x_0) = int_0^x_0 yle x_0,y(x_0)implies y(x_0) = 0,$$
                          i.e., $yequiv 0$ in $[0,1)$, so in $[0,1]$ by continuity. The same argument works in $[1,2]$, $[2,3]$,...






                          share|cite|improve this answer














                          Direct proof: any solution $y$ will be nondecreasing as $y'(x) = |y(x)|ge 0$. Then $y(x)ge 0$ for $xge 0$ and $y'(x) = y(x)$ for $xge 0$. Integrating,
                          $$y(x) = y(x) - y(0) = int_0^x y = 0 + int_0^x y.$$
                          Now, applying the Gronwall lemma, $y(x)le 0$ for $xge 0$.



                          EDIT: even more direct (Gronwall-less) proof.



                          Take $x_0in(0,1)$. Integrating as before and using that $y$ is nondecreasing,
                          $$y(x_0) = int_0^x_0 yle x_0,y(x_0)implies y(x_0) = 0,$$
                          i.e., $yequiv 0$ in $[0,1)$, so in $[0,1]$ by continuity. The same argument works in $[1,2]$, $[2,3]$,...







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Aug 21 at 16:49

























                          answered Aug 17 at 14:04









                          Martín-Blas Pérez Pinilla

                          33.5k42570




                          33.5k42570



























                               

                              draft saved


                              draft discarded















































                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2885376%2fhas-this-i-v-p-unique-solution%23new-answer', 'question_page');

                              );

                              Post as a guest













































































                              Popular posts from this blog

                              How to check contact read email or not when send email to Individual?

                              Christian Cage

                              How to properly install USB display driver for Fresco Logic FL2000DX on Ubuntu?