Can this self-adjoint operator have an infinite-dimensional compression with compact inverse?

Multi tool use
Multi tool use

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
4
down vote

favorite
2












The following might be quite straightforward, but I very rarely work in detail with unbounded operators, so I thought it would be worth seeing quickly if I have overlooked an example that is obvious from the right point of view.



Let $H=L^2(-infty,infty)$ and let $S:H supset rm dom(S) to H$ be the densely-defined operator $(Sf)(x)=e^xf(x)$, with domain
$$
rm dom(S)=^2,dx <infty
$$
Then $S$ is self-adjoint.



Question. Does there exists a projection $P:Hto H$, with range $V$, satisfying the following properties?



  1. $V$ is infinite-dimensional and $V':=rm dom(S)cap V$ is dense in $V$.


  2. there is a compact operator $R:Vto V$ such that $RPSPvert_V'= I_V'$?


Some remarks:



(a) If we weakened 2. to merely require $R$ being bounded, then this should be easy by taking $V=L^2[0,infty)$ and $R:Vto V$ to be multiplication by $e^-x$. But of course $R$ has continuous spectrum, so it can't be compact.



(b) If we intertwine with the Fourier transform or something similar, perhaps we can we obtain such a $V$ as the solution space to a suitable differential equation? (I have not looked at this vague idea in any detail yet.)



(c) If the answer to the question is positive, can we even get $R$ being trace-class?










share|cite|improve this question

















  • 1




    "Projection" here means "orthogonal projection"?
    – Nate Eldredge
    Aug 17 at 3:09










  • @NateEldredge oops, yes. (Had my op alg hat on, where that is the usual shorthand)
    – Yemon Choi
    Aug 17 at 3:25














up vote
4
down vote

favorite
2












The following might be quite straightforward, but I very rarely work in detail with unbounded operators, so I thought it would be worth seeing quickly if I have overlooked an example that is obvious from the right point of view.



Let $H=L^2(-infty,infty)$ and let $S:H supset rm dom(S) to H$ be the densely-defined operator $(Sf)(x)=e^xf(x)$, with domain
$$
rm dom(S)=^2,dx <infty
$$
Then $S$ is self-adjoint.



Question. Does there exists a projection $P:Hto H$, with range $V$, satisfying the following properties?



  1. $V$ is infinite-dimensional and $V':=rm dom(S)cap V$ is dense in $V$.


  2. there is a compact operator $R:Vto V$ such that $RPSPvert_V'= I_V'$?


Some remarks:



(a) If we weakened 2. to merely require $R$ being bounded, then this should be easy by taking $V=L^2[0,infty)$ and $R:Vto V$ to be multiplication by $e^-x$. But of course $R$ has continuous spectrum, so it can't be compact.



(b) If we intertwine with the Fourier transform or something similar, perhaps we can we obtain such a $V$ as the solution space to a suitable differential equation? (I have not looked at this vague idea in any detail yet.)



(c) If the answer to the question is positive, can we even get $R$ being trace-class?










share|cite|improve this question

















  • 1




    "Projection" here means "orthogonal projection"?
    – Nate Eldredge
    Aug 17 at 3:09










  • @NateEldredge oops, yes. (Had my op alg hat on, where that is the usual shorthand)
    – Yemon Choi
    Aug 17 at 3:25












up vote
4
down vote

favorite
2









up vote
4
down vote

favorite
2






2





The following might be quite straightforward, but I very rarely work in detail with unbounded operators, so I thought it would be worth seeing quickly if I have overlooked an example that is obvious from the right point of view.



Let $H=L^2(-infty,infty)$ and let $S:H supset rm dom(S) to H$ be the densely-defined operator $(Sf)(x)=e^xf(x)$, with domain
$$
rm dom(S)=^2,dx <infty
$$
Then $S$ is self-adjoint.



Question. Does there exists a projection $P:Hto H$, with range $V$, satisfying the following properties?



  1. $V$ is infinite-dimensional and $V':=rm dom(S)cap V$ is dense in $V$.


  2. there is a compact operator $R:Vto V$ such that $RPSPvert_V'= I_V'$?


Some remarks:



(a) If we weakened 2. to merely require $R$ being bounded, then this should be easy by taking $V=L^2[0,infty)$ and $R:Vto V$ to be multiplication by $e^-x$. But of course $R$ has continuous spectrum, so it can't be compact.



(b) If we intertwine with the Fourier transform or something similar, perhaps we can we obtain such a $V$ as the solution space to a suitable differential equation? (I have not looked at this vague idea in any detail yet.)



(c) If the answer to the question is positive, can we even get $R$ being trace-class?










share|cite|improve this question













The following might be quite straightforward, but I very rarely work in detail with unbounded operators, so I thought it would be worth seeing quickly if I have overlooked an example that is obvious from the right point of view.



Let $H=L^2(-infty,infty)$ and let $S:H supset rm dom(S) to H$ be the densely-defined operator $(Sf)(x)=e^xf(x)$, with domain
$$
rm dom(S)=^2,dx <infty
$$
Then $S$ is self-adjoint.



Question. Does there exists a projection $P:Hto H$, with range $V$, satisfying the following properties?



  1. $V$ is infinite-dimensional and $V':=rm dom(S)cap V$ is dense in $V$.


  2. there is a compact operator $R:Vto V$ such that $RPSPvert_V'= I_V'$?


Some remarks:



(a) If we weakened 2. to merely require $R$ being bounded, then this should be easy by taking $V=L^2[0,infty)$ and $R:Vto V$ to be multiplication by $e^-x$. But of course $R$ has continuous spectrum, so it can't be compact.



(b) If we intertwine with the Fourier transform or something similar, perhaps we can we obtain such a $V$ as the solution space to a suitable differential equation? (I have not looked at this vague idea in any detail yet.)



(c) If the answer to the question is positive, can we even get $R$ being trace-class?







fa.functional-analysis operator-theory sp.spectral-theory






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Aug 17 at 2:28









Yemon Choi

16.2k54699




16.2k54699







  • 1




    "Projection" here means "orthogonal projection"?
    – Nate Eldredge
    Aug 17 at 3:09










  • @NateEldredge oops, yes. (Had my op alg hat on, where that is the usual shorthand)
    – Yemon Choi
    Aug 17 at 3:25












  • 1




    "Projection" here means "orthogonal projection"?
    – Nate Eldredge
    Aug 17 at 3:09










  • @NateEldredge oops, yes. (Had my op alg hat on, where that is the usual shorthand)
    – Yemon Choi
    Aug 17 at 3:25







1




1




"Projection" here means "orthogonal projection"?
– Nate Eldredge
Aug 17 at 3:09




"Projection" here means "orthogonal projection"?
– Nate Eldredge
Aug 17 at 3:09












@NateEldredge oops, yes. (Had my op alg hat on, where that is the usual shorthand)
– Yemon Choi
Aug 17 at 3:25




@NateEldredge oops, yes. (Had my op alg hat on, where that is the usual shorthand)
– Yemon Choi
Aug 17 at 3:25










1 Answer
1






active

oldest

votes

















up vote
7
down vote



accepted










Sure, for instance let $P$ be the orthogonal projection onto the closed span of the characteristic functions $chi_[n,n+1)$ for $n in mathbbN$. You get property 1 because each of these functions is in the domain of $S$, and you get property 2 because, identifying $V$ with $l^2$ in the obvious way, the operator $PSP$ becomes multiplication by, I think, $e^n(e - 1)$. So this compression has compact, even trace-class inverse, namely multiplication by $e^-n(e-1)^-1$.






share|cite|improve this answer
















  • 1




    Kicking myself now for not thinking of trying to discretize the spectrum by brute force. Looks good - I'll come back tomorrow and double-check the details
    – Yemon Choi
    Aug 17 at 3:42






  • 1




    BTW, by comprssing to an increasing sequence $(n_k)$ you can make the eigenvalues of $PSP$ go to infinity as fast as you want.
    – Nik Weaver
    Aug 17 at 13:52










Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "504"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f308497%2fcan-this-self-adjoint-operator-have-an-infinite-dimensional-compression-with-com%23new-answer', 'question_page');

);

Post as a guest






























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
7
down vote



accepted










Sure, for instance let $P$ be the orthogonal projection onto the closed span of the characteristic functions $chi_[n,n+1)$ for $n in mathbbN$. You get property 1 because each of these functions is in the domain of $S$, and you get property 2 because, identifying $V$ with $l^2$ in the obvious way, the operator $PSP$ becomes multiplication by, I think, $e^n(e - 1)$. So this compression has compact, even trace-class inverse, namely multiplication by $e^-n(e-1)^-1$.






share|cite|improve this answer
















  • 1




    Kicking myself now for not thinking of trying to discretize the spectrum by brute force. Looks good - I'll come back tomorrow and double-check the details
    – Yemon Choi
    Aug 17 at 3:42






  • 1




    BTW, by comprssing to an increasing sequence $(n_k)$ you can make the eigenvalues of $PSP$ go to infinity as fast as you want.
    – Nik Weaver
    Aug 17 at 13:52














up vote
7
down vote



accepted










Sure, for instance let $P$ be the orthogonal projection onto the closed span of the characteristic functions $chi_[n,n+1)$ for $n in mathbbN$. You get property 1 because each of these functions is in the domain of $S$, and you get property 2 because, identifying $V$ with $l^2$ in the obvious way, the operator $PSP$ becomes multiplication by, I think, $e^n(e - 1)$. So this compression has compact, even trace-class inverse, namely multiplication by $e^-n(e-1)^-1$.






share|cite|improve this answer
















  • 1




    Kicking myself now for not thinking of trying to discretize the spectrum by brute force. Looks good - I'll come back tomorrow and double-check the details
    – Yemon Choi
    Aug 17 at 3:42






  • 1




    BTW, by comprssing to an increasing sequence $(n_k)$ you can make the eigenvalues of $PSP$ go to infinity as fast as you want.
    – Nik Weaver
    Aug 17 at 13:52












up vote
7
down vote



accepted







up vote
7
down vote



accepted






Sure, for instance let $P$ be the orthogonal projection onto the closed span of the characteristic functions $chi_[n,n+1)$ for $n in mathbbN$. You get property 1 because each of these functions is in the domain of $S$, and you get property 2 because, identifying $V$ with $l^2$ in the obvious way, the operator $PSP$ becomes multiplication by, I think, $e^n(e - 1)$. So this compression has compact, even trace-class inverse, namely multiplication by $e^-n(e-1)^-1$.






share|cite|improve this answer












Sure, for instance let $P$ be the orthogonal projection onto the closed span of the characteristic functions $chi_[n,n+1)$ for $n in mathbbN$. You get property 1 because each of these functions is in the domain of $S$, and you get property 2 because, identifying $V$ with $l^2$ in the obvious way, the operator $PSP$ becomes multiplication by, I think, $e^n(e - 1)$. So this compression has compact, even trace-class inverse, namely multiplication by $e^-n(e-1)^-1$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Aug 17 at 3:26









Nik Weaver

17.9k143114




17.9k143114







  • 1




    Kicking myself now for not thinking of trying to discretize the spectrum by brute force. Looks good - I'll come back tomorrow and double-check the details
    – Yemon Choi
    Aug 17 at 3:42






  • 1




    BTW, by comprssing to an increasing sequence $(n_k)$ you can make the eigenvalues of $PSP$ go to infinity as fast as you want.
    – Nik Weaver
    Aug 17 at 13:52












  • 1




    Kicking myself now for not thinking of trying to discretize the spectrum by brute force. Looks good - I'll come back tomorrow and double-check the details
    – Yemon Choi
    Aug 17 at 3:42






  • 1




    BTW, by comprssing to an increasing sequence $(n_k)$ you can make the eigenvalues of $PSP$ go to infinity as fast as you want.
    – Nik Weaver
    Aug 17 at 13:52







1




1




Kicking myself now for not thinking of trying to discretize the spectrum by brute force. Looks good - I'll come back tomorrow and double-check the details
– Yemon Choi
Aug 17 at 3:42




Kicking myself now for not thinking of trying to discretize the spectrum by brute force. Looks good - I'll come back tomorrow and double-check the details
– Yemon Choi
Aug 17 at 3:42




1




1




BTW, by comprssing to an increasing sequence $(n_k)$ you can make the eigenvalues of $PSP$ go to infinity as fast as you want.
– Nik Weaver
Aug 17 at 13:52




BTW, by comprssing to an increasing sequence $(n_k)$ you can make the eigenvalues of $PSP$ go to infinity as fast as you want.
– Nik Weaver
Aug 17 at 13:52

















 

draft saved


draft discarded















































 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f308497%2fcan-this-self-adjoint-operator-have-an-infinite-dimensional-compression-with-com%23new-answer', 'question_page');

);

Post as a guest













































































wJB65xgYrdq8S4ZA,aba57WITDKlRIa ou66mAgVoxyxM7nnvuIbk0
WTSqs6AV8ZiUsO8JDt t24JjJR0A3y1hT3GdZq OGFZ0jLLH,ecNI U0

Popular posts from this blog

How to check contact read email or not when send email to Individual?

How many registers does an x86_64 CPU actually have?

Displaying single band from multi-band raster using QGIS