Determining the Method option that FindClusters uses with AbsoluteOptions
Clash Royale CLAN TAG#URR8PPP
$begingroup$
I am trying to determine which method mathematica chooses when using FindClusters. The documentation says that it chooses the best one for the data. I have tried to use AbsoluteOptions
, which says it returns the options for a command, but it does not seem to be working.
GaussianRandomData[n_Integer, p_, sigma_] :=
Table[p +
Re[#], Im[#]&[RandomReal[NormalDistribution[0, sigma]] E^(I RandomReal[0, 2 π])], n];
datapairs = BlockRandom[SeedRandom[2134];
Join[
GaussianRandomData[100, 2, 1, .3],
GaussianRandomData[100, 1, 1.8, .2],
GaussianRandomData[100, 1, 1.1, .4],
GaussianRandomData[100, 1.75, 1.75, 0.1]]];
AbsoluteOptions[FindClusters[datapairs, Method -> Automatic], Method]
Any help would be appreciated.
cluster-analysis
$endgroup$
add a comment |
$begingroup$
I am trying to determine which method mathematica chooses when using FindClusters. The documentation says that it chooses the best one for the data. I have tried to use AbsoluteOptions
, which says it returns the options for a command, but it does not seem to be working.
GaussianRandomData[n_Integer, p_, sigma_] :=
Table[p +
Re[#], Im[#]&[RandomReal[NormalDistribution[0, sigma]] E^(I RandomReal[0, 2 π])], n];
datapairs = BlockRandom[SeedRandom[2134];
Join[
GaussianRandomData[100, 2, 1, .3],
GaussianRandomData[100, 1, 1.8, .2],
GaussianRandomData[100, 1, 1.1, .4],
GaussianRandomData[100, 1.75, 1.75, 0.1]]];
AbsoluteOptions[FindClusters[datapairs, Method -> Automatic], Method]
Any help would be appreciated.
cluster-analysis
$endgroup$
$begingroup$
You might be interested to know you can replaceRe[#], Im[#]&
withReIm
$endgroup$
– m_goldberg
Feb 7 at 23:56
add a comment |
$begingroup$
I am trying to determine which method mathematica chooses when using FindClusters. The documentation says that it chooses the best one for the data. I have tried to use AbsoluteOptions
, which says it returns the options for a command, but it does not seem to be working.
GaussianRandomData[n_Integer, p_, sigma_] :=
Table[p +
Re[#], Im[#]&[RandomReal[NormalDistribution[0, sigma]] E^(I RandomReal[0, 2 π])], n];
datapairs = BlockRandom[SeedRandom[2134];
Join[
GaussianRandomData[100, 2, 1, .3],
GaussianRandomData[100, 1, 1.8, .2],
GaussianRandomData[100, 1, 1.1, .4],
GaussianRandomData[100, 1.75, 1.75, 0.1]]];
AbsoluteOptions[FindClusters[datapairs, Method -> Automatic], Method]
Any help would be appreciated.
cluster-analysis
$endgroup$
I am trying to determine which method mathematica chooses when using FindClusters. The documentation says that it chooses the best one for the data. I have tried to use AbsoluteOptions
, which says it returns the options for a command, but it does not seem to be working.
GaussianRandomData[n_Integer, p_, sigma_] :=
Table[p +
Re[#], Im[#]&[RandomReal[NormalDistribution[0, sigma]] E^(I RandomReal[0, 2 π])], n];
datapairs = BlockRandom[SeedRandom[2134];
Join[
GaussianRandomData[100, 2, 1, .3],
GaussianRandomData[100, 1, 1.8, .2],
GaussianRandomData[100, 1, 1.1, .4],
GaussianRandomData[100, 1.75, 1.75, 0.1]]];
AbsoluteOptions[FindClusters[datapairs, Method -> Automatic], Method]
Any help would be appreciated.
cluster-analysis
cluster-analysis
edited Feb 7 at 23:53
m_goldberg
86.9k872197
86.9k872197
asked Feb 7 at 19:16
MikeMike
283
283
$begingroup$
You might be interested to know you can replaceRe[#], Im[#]&
withReIm
$endgroup$
– m_goldberg
Feb 7 at 23:56
add a comment |
$begingroup$
You might be interested to know you can replaceRe[#], Im[#]&
withReIm
$endgroup$
– m_goldberg
Feb 7 at 23:56
$begingroup$
You might be interested to know you can replace
Re[#], Im[#]&
with ReIm
$endgroup$
– m_goldberg
Feb 7 at 23:56
$begingroup$
You might be interested to know you can replace
Re[#], Im[#]&
with ReIm
$endgroup$
– m_goldberg
Feb 7 at 23:56
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Using Trace
with the option TraceInternal -> True
gives:
DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, Method -> Automatic],
HoldPattern[Rule["Method", _]], TraceInternal -> True]]
"Method"->"GaussianMixture"
If you specify the number of clusters:
DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, 3, Method -> Automatic],
HoldPattern[Rule["Method", _]], TraceInternal -> True]]
"Method"->"KMeans"
With PerformanceGoal -> "Quality"
DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, 3, Method -> Automatic,
PerformanceGoal -> "Quality"], HoldPattern[Rule["Method", _]],
TraceInternal -> True]]
"Method"->"KMedoids"
l = RGBColor[1., 0.5544801460824762, 0.12056345655596812`], RGBColor[
1., 0.2818404077149421, 0.1073945311994069], RGBColor[
1., 0.12423838985259317`, 0.19023691956664956`], RGBColor[
0.8, 0.4542154246540884, 0.31688034954543], RGBColor[
0.8, 0.5483770742736782, 0.16977938137471082`], RGBColor[
0.8, 0.03163746197875539, 0.5781619271042624], RGBColor[
0.8, 0.1612089376881538, 0.15737556414394493`], RGBColor[
0.5, 0.8592283961197744, 0.04768022523989446], RGBColor[
0.1544029090531034, 0.5400111921283921, 0.1332688011328087],
RGBColor[0.5550268260924609, 0.6650311925481958, 0.24096295360192643`],
RGBColor[0.8424867588418756, 0.9610747917029776, 0.38159472421539053`],
RGBColor[0.5, 0.6654316628707297, 0.9850955091132039], RGBColor[
0.1726013976586489, 0.7948159289195966, 0.9375970360424373],
RGBColor[0.07338116039584297, 0.6615692536088942, 0.9035903703739081],
RGBColor[0.0396922307314016, 0.06815211658088716, 0.9401879243429714],
RGBColor[0.26561262398696184`, 0.1750699399994622, 0.47868645290098866`];
DeleteDuplicates[Flatten@Trace[FindClusters[l], HoldPattern[Rule["Method", _]],
TraceInternal -> True]]
Method -> DBSCAN
The function MachineLearning`file40Decisions`PackagePrivate`automaticClusterNumberMethods
seems to determine the method to be used based on input type, data dimensions and the setting for the option PerformanceGoal
:
automaticClusterNumberMethods[type_, performanceGoal_, dims_]:= If[
MachineLearning`file40Decisions`PackagePrivate`vectorSpaceQ[type],
Switch[
performanceGoal, Automatic | "Memory",
If[Greater[Last @ dims, 7],
"DBSCAN", "NeighborhoodContraction", "Agglomerate",
"DBSCAN", "NeighborhoodContraction", "GaussianMixture",
"Agglomerate"
],
"Speed",
"DBSCAN", "GaussianMixture", "NeighborhoodContraction",
"Quality",
"Agglomerate", "DBSCAN", "JarvisPatrick", "MeanShift",
"Spectral", "SpanningTree",
"NeighborhoodContraction", "GaussianMixture"
,
"TrainingSpeed",
"DBSCAN", "NeighborhoodContraction"
],
"DBSCAN", "JarvisPatrick"
];
If the number of clusters is given the function MachineLearning`file40Decisions`PackagePrivate`givenClusterNumberMethods
is called to determine the method to be used:
givenClusterNumberMethods[type_, performanceGoal_] := If[
vectorSpaceQ[type],
Switch[
performanceGoal, Automatic | "Memory" | "Speed",
"KMeans", "Agglomerate",
"Quality",
"KMeans", "Agglomerate", "Spectral", "KMedoids",
"TrainingSpeed",
"KMeans"
],
If[MatchQ[type, "Location"],
"KMedoids",
"KMedoids", "Agglomerate"
]
];
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "387"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f191087%2fdetermining-the-method-option-that-findclusters-uses-with-absoluteoptions%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Using Trace
with the option TraceInternal -> True
gives:
DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, Method -> Automatic],
HoldPattern[Rule["Method", _]], TraceInternal -> True]]
"Method"->"GaussianMixture"
If you specify the number of clusters:
DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, 3, Method -> Automatic],
HoldPattern[Rule["Method", _]], TraceInternal -> True]]
"Method"->"KMeans"
With PerformanceGoal -> "Quality"
DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, 3, Method -> Automatic,
PerformanceGoal -> "Quality"], HoldPattern[Rule["Method", _]],
TraceInternal -> True]]
"Method"->"KMedoids"
l = RGBColor[1., 0.5544801460824762, 0.12056345655596812`], RGBColor[
1., 0.2818404077149421, 0.1073945311994069], RGBColor[
1., 0.12423838985259317`, 0.19023691956664956`], RGBColor[
0.8, 0.4542154246540884, 0.31688034954543], RGBColor[
0.8, 0.5483770742736782, 0.16977938137471082`], RGBColor[
0.8, 0.03163746197875539, 0.5781619271042624], RGBColor[
0.8, 0.1612089376881538, 0.15737556414394493`], RGBColor[
0.5, 0.8592283961197744, 0.04768022523989446], RGBColor[
0.1544029090531034, 0.5400111921283921, 0.1332688011328087],
RGBColor[0.5550268260924609, 0.6650311925481958, 0.24096295360192643`],
RGBColor[0.8424867588418756, 0.9610747917029776, 0.38159472421539053`],
RGBColor[0.5, 0.6654316628707297, 0.9850955091132039], RGBColor[
0.1726013976586489, 0.7948159289195966, 0.9375970360424373],
RGBColor[0.07338116039584297, 0.6615692536088942, 0.9035903703739081],
RGBColor[0.0396922307314016, 0.06815211658088716, 0.9401879243429714],
RGBColor[0.26561262398696184`, 0.1750699399994622, 0.47868645290098866`];
DeleteDuplicates[Flatten@Trace[FindClusters[l], HoldPattern[Rule["Method", _]],
TraceInternal -> True]]
Method -> DBSCAN
The function MachineLearning`file40Decisions`PackagePrivate`automaticClusterNumberMethods
seems to determine the method to be used based on input type, data dimensions and the setting for the option PerformanceGoal
:
automaticClusterNumberMethods[type_, performanceGoal_, dims_]:= If[
MachineLearning`file40Decisions`PackagePrivate`vectorSpaceQ[type],
Switch[
performanceGoal, Automatic | "Memory",
If[Greater[Last @ dims, 7],
"DBSCAN", "NeighborhoodContraction", "Agglomerate",
"DBSCAN", "NeighborhoodContraction", "GaussianMixture",
"Agglomerate"
],
"Speed",
"DBSCAN", "GaussianMixture", "NeighborhoodContraction",
"Quality",
"Agglomerate", "DBSCAN", "JarvisPatrick", "MeanShift",
"Spectral", "SpanningTree",
"NeighborhoodContraction", "GaussianMixture"
,
"TrainingSpeed",
"DBSCAN", "NeighborhoodContraction"
],
"DBSCAN", "JarvisPatrick"
];
If the number of clusters is given the function MachineLearning`file40Decisions`PackagePrivate`givenClusterNumberMethods
is called to determine the method to be used:
givenClusterNumberMethods[type_, performanceGoal_] := If[
vectorSpaceQ[type],
Switch[
performanceGoal, Automatic | "Memory" | "Speed",
"KMeans", "Agglomerate",
"Quality",
"KMeans", "Agglomerate", "Spectral", "KMedoids",
"TrainingSpeed",
"KMeans"
],
If[MatchQ[type, "Location"],
"KMedoids",
"KMedoids", "Agglomerate"
]
];
$endgroup$
add a comment |
$begingroup$
Using Trace
with the option TraceInternal -> True
gives:
DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, Method -> Automatic],
HoldPattern[Rule["Method", _]], TraceInternal -> True]]
"Method"->"GaussianMixture"
If you specify the number of clusters:
DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, 3, Method -> Automatic],
HoldPattern[Rule["Method", _]], TraceInternal -> True]]
"Method"->"KMeans"
With PerformanceGoal -> "Quality"
DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, 3, Method -> Automatic,
PerformanceGoal -> "Quality"], HoldPattern[Rule["Method", _]],
TraceInternal -> True]]
"Method"->"KMedoids"
l = RGBColor[1., 0.5544801460824762, 0.12056345655596812`], RGBColor[
1., 0.2818404077149421, 0.1073945311994069], RGBColor[
1., 0.12423838985259317`, 0.19023691956664956`], RGBColor[
0.8, 0.4542154246540884, 0.31688034954543], RGBColor[
0.8, 0.5483770742736782, 0.16977938137471082`], RGBColor[
0.8, 0.03163746197875539, 0.5781619271042624], RGBColor[
0.8, 0.1612089376881538, 0.15737556414394493`], RGBColor[
0.5, 0.8592283961197744, 0.04768022523989446], RGBColor[
0.1544029090531034, 0.5400111921283921, 0.1332688011328087],
RGBColor[0.5550268260924609, 0.6650311925481958, 0.24096295360192643`],
RGBColor[0.8424867588418756, 0.9610747917029776, 0.38159472421539053`],
RGBColor[0.5, 0.6654316628707297, 0.9850955091132039], RGBColor[
0.1726013976586489, 0.7948159289195966, 0.9375970360424373],
RGBColor[0.07338116039584297, 0.6615692536088942, 0.9035903703739081],
RGBColor[0.0396922307314016, 0.06815211658088716, 0.9401879243429714],
RGBColor[0.26561262398696184`, 0.1750699399994622, 0.47868645290098866`];
DeleteDuplicates[Flatten@Trace[FindClusters[l], HoldPattern[Rule["Method", _]],
TraceInternal -> True]]
Method -> DBSCAN
The function MachineLearning`file40Decisions`PackagePrivate`automaticClusterNumberMethods
seems to determine the method to be used based on input type, data dimensions and the setting for the option PerformanceGoal
:
automaticClusterNumberMethods[type_, performanceGoal_, dims_]:= If[
MachineLearning`file40Decisions`PackagePrivate`vectorSpaceQ[type],
Switch[
performanceGoal, Automatic | "Memory",
If[Greater[Last @ dims, 7],
"DBSCAN", "NeighborhoodContraction", "Agglomerate",
"DBSCAN", "NeighborhoodContraction", "GaussianMixture",
"Agglomerate"
],
"Speed",
"DBSCAN", "GaussianMixture", "NeighborhoodContraction",
"Quality",
"Agglomerate", "DBSCAN", "JarvisPatrick", "MeanShift",
"Spectral", "SpanningTree",
"NeighborhoodContraction", "GaussianMixture"
,
"TrainingSpeed",
"DBSCAN", "NeighborhoodContraction"
],
"DBSCAN", "JarvisPatrick"
];
If the number of clusters is given the function MachineLearning`file40Decisions`PackagePrivate`givenClusterNumberMethods
is called to determine the method to be used:
givenClusterNumberMethods[type_, performanceGoal_] := If[
vectorSpaceQ[type],
Switch[
performanceGoal, Automatic | "Memory" | "Speed",
"KMeans", "Agglomerate",
"Quality",
"KMeans", "Agglomerate", "Spectral", "KMedoids",
"TrainingSpeed",
"KMeans"
],
If[MatchQ[type, "Location"],
"KMedoids",
"KMedoids", "Agglomerate"
]
];
$endgroup$
add a comment |
$begingroup$
Using Trace
with the option TraceInternal -> True
gives:
DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, Method -> Automatic],
HoldPattern[Rule["Method", _]], TraceInternal -> True]]
"Method"->"GaussianMixture"
If you specify the number of clusters:
DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, 3, Method -> Automatic],
HoldPattern[Rule["Method", _]], TraceInternal -> True]]
"Method"->"KMeans"
With PerformanceGoal -> "Quality"
DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, 3, Method -> Automatic,
PerformanceGoal -> "Quality"], HoldPattern[Rule["Method", _]],
TraceInternal -> True]]
"Method"->"KMedoids"
l = RGBColor[1., 0.5544801460824762, 0.12056345655596812`], RGBColor[
1., 0.2818404077149421, 0.1073945311994069], RGBColor[
1., 0.12423838985259317`, 0.19023691956664956`], RGBColor[
0.8, 0.4542154246540884, 0.31688034954543], RGBColor[
0.8, 0.5483770742736782, 0.16977938137471082`], RGBColor[
0.8, 0.03163746197875539, 0.5781619271042624], RGBColor[
0.8, 0.1612089376881538, 0.15737556414394493`], RGBColor[
0.5, 0.8592283961197744, 0.04768022523989446], RGBColor[
0.1544029090531034, 0.5400111921283921, 0.1332688011328087],
RGBColor[0.5550268260924609, 0.6650311925481958, 0.24096295360192643`],
RGBColor[0.8424867588418756, 0.9610747917029776, 0.38159472421539053`],
RGBColor[0.5, 0.6654316628707297, 0.9850955091132039], RGBColor[
0.1726013976586489, 0.7948159289195966, 0.9375970360424373],
RGBColor[0.07338116039584297, 0.6615692536088942, 0.9035903703739081],
RGBColor[0.0396922307314016, 0.06815211658088716, 0.9401879243429714],
RGBColor[0.26561262398696184`, 0.1750699399994622, 0.47868645290098866`];
DeleteDuplicates[Flatten@Trace[FindClusters[l], HoldPattern[Rule["Method", _]],
TraceInternal -> True]]
Method -> DBSCAN
The function MachineLearning`file40Decisions`PackagePrivate`automaticClusterNumberMethods
seems to determine the method to be used based on input type, data dimensions and the setting for the option PerformanceGoal
:
automaticClusterNumberMethods[type_, performanceGoal_, dims_]:= If[
MachineLearning`file40Decisions`PackagePrivate`vectorSpaceQ[type],
Switch[
performanceGoal, Automatic | "Memory",
If[Greater[Last @ dims, 7],
"DBSCAN", "NeighborhoodContraction", "Agglomerate",
"DBSCAN", "NeighborhoodContraction", "GaussianMixture",
"Agglomerate"
],
"Speed",
"DBSCAN", "GaussianMixture", "NeighborhoodContraction",
"Quality",
"Agglomerate", "DBSCAN", "JarvisPatrick", "MeanShift",
"Spectral", "SpanningTree",
"NeighborhoodContraction", "GaussianMixture"
,
"TrainingSpeed",
"DBSCAN", "NeighborhoodContraction"
],
"DBSCAN", "JarvisPatrick"
];
If the number of clusters is given the function MachineLearning`file40Decisions`PackagePrivate`givenClusterNumberMethods
is called to determine the method to be used:
givenClusterNumberMethods[type_, performanceGoal_] := If[
vectorSpaceQ[type],
Switch[
performanceGoal, Automatic | "Memory" | "Speed",
"KMeans", "Agglomerate",
"Quality",
"KMeans", "Agglomerate", "Spectral", "KMedoids",
"TrainingSpeed",
"KMeans"
],
If[MatchQ[type, "Location"],
"KMedoids",
"KMedoids", "Agglomerate"
]
];
$endgroup$
Using Trace
with the option TraceInternal -> True
gives:
DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, Method -> Automatic],
HoldPattern[Rule["Method", _]], TraceInternal -> True]]
"Method"->"GaussianMixture"
If you specify the number of clusters:
DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, 3, Method -> Automatic],
HoldPattern[Rule["Method", _]], TraceInternal -> True]]
"Method"->"KMeans"
With PerformanceGoal -> "Quality"
DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, 3, Method -> Automatic,
PerformanceGoal -> "Quality"], HoldPattern[Rule["Method", _]],
TraceInternal -> True]]
"Method"->"KMedoids"
l = RGBColor[1., 0.5544801460824762, 0.12056345655596812`], RGBColor[
1., 0.2818404077149421, 0.1073945311994069], RGBColor[
1., 0.12423838985259317`, 0.19023691956664956`], RGBColor[
0.8, 0.4542154246540884, 0.31688034954543], RGBColor[
0.8, 0.5483770742736782, 0.16977938137471082`], RGBColor[
0.8, 0.03163746197875539, 0.5781619271042624], RGBColor[
0.8, 0.1612089376881538, 0.15737556414394493`], RGBColor[
0.5, 0.8592283961197744, 0.04768022523989446], RGBColor[
0.1544029090531034, 0.5400111921283921, 0.1332688011328087],
RGBColor[0.5550268260924609, 0.6650311925481958, 0.24096295360192643`],
RGBColor[0.8424867588418756, 0.9610747917029776, 0.38159472421539053`],
RGBColor[0.5, 0.6654316628707297, 0.9850955091132039], RGBColor[
0.1726013976586489, 0.7948159289195966, 0.9375970360424373],
RGBColor[0.07338116039584297, 0.6615692536088942, 0.9035903703739081],
RGBColor[0.0396922307314016, 0.06815211658088716, 0.9401879243429714],
RGBColor[0.26561262398696184`, 0.1750699399994622, 0.47868645290098866`];
DeleteDuplicates[Flatten@Trace[FindClusters[l], HoldPattern[Rule["Method", _]],
TraceInternal -> True]]
Method -> DBSCAN
The function MachineLearning`file40Decisions`PackagePrivate`automaticClusterNumberMethods
seems to determine the method to be used based on input type, data dimensions and the setting for the option PerformanceGoal
:
automaticClusterNumberMethods[type_, performanceGoal_, dims_]:= If[
MachineLearning`file40Decisions`PackagePrivate`vectorSpaceQ[type],
Switch[
performanceGoal, Automatic | "Memory",
If[Greater[Last @ dims, 7],
"DBSCAN", "NeighborhoodContraction", "Agglomerate",
"DBSCAN", "NeighborhoodContraction", "GaussianMixture",
"Agglomerate"
],
"Speed",
"DBSCAN", "GaussianMixture", "NeighborhoodContraction",
"Quality",
"Agglomerate", "DBSCAN", "JarvisPatrick", "MeanShift",
"Spectral", "SpanningTree",
"NeighborhoodContraction", "GaussianMixture"
,
"TrainingSpeed",
"DBSCAN", "NeighborhoodContraction"
],
"DBSCAN", "JarvisPatrick"
];
If the number of clusters is given the function MachineLearning`file40Decisions`PackagePrivate`givenClusterNumberMethods
is called to determine the method to be used:
givenClusterNumberMethods[type_, performanceGoal_] := If[
vectorSpaceQ[type],
Switch[
performanceGoal, Automatic | "Memory" | "Speed",
"KMeans", "Agglomerate",
"Quality",
"KMeans", "Agglomerate", "Spectral", "KMedoids",
"TrainingSpeed",
"KMeans"
],
If[MatchQ[type, "Location"],
"KMedoids",
"KMedoids", "Agglomerate"
]
];
edited Feb 7 at 21:40
answered Feb 7 at 21:23
kglrkglr
186k10203422
186k10203422
add a comment |
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f191087%2fdetermining-the-method-option-that-findclusters-uses-with-absoluteoptions%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You might be interested to know you can replace
Re[#], Im[#]&
withReIm
$endgroup$
– m_goldberg
Feb 7 at 23:56