Determining the Method option that FindClusters uses with AbsoluteOptions

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP












5












$begingroup$


I am trying to determine which method mathematica chooses when using FindClusters. The documentation says that it chooses the best one for the data. I have tried to use AbsoluteOptions, which says it returns the options for a command, but it does not seem to be working.



GaussianRandomData[n_Integer, p_, sigma_] := 
Table[p +
Re[#], Im[#]&[RandomReal[NormalDistribution[0, sigma]] E^(I RandomReal[0, 2 π])], n];
datapairs = BlockRandom[SeedRandom[2134];
Join[
GaussianRandomData[100, 2, 1, .3],
GaussianRandomData[100, 1, 1.8, .2],
GaussianRandomData[100, 1, 1.1, .4],
GaussianRandomData[100, 1.75, 1.75, 0.1]]];

AbsoluteOptions[FindClusters[datapairs, Method -> Automatic], Method]


Any help would be appreciated.










share|improve this question











$endgroup$











  • $begingroup$
    You might be interested to know you can replace Re[#], Im[#]& with ReIm
    $endgroup$
    – m_goldberg
    Feb 7 at 23:56















5












$begingroup$


I am trying to determine which method mathematica chooses when using FindClusters. The documentation says that it chooses the best one for the data. I have tried to use AbsoluteOptions, which says it returns the options for a command, but it does not seem to be working.



GaussianRandomData[n_Integer, p_, sigma_] := 
Table[p +
Re[#], Im[#]&[RandomReal[NormalDistribution[0, sigma]] E^(I RandomReal[0, 2 π])], n];
datapairs = BlockRandom[SeedRandom[2134];
Join[
GaussianRandomData[100, 2, 1, .3],
GaussianRandomData[100, 1, 1.8, .2],
GaussianRandomData[100, 1, 1.1, .4],
GaussianRandomData[100, 1.75, 1.75, 0.1]]];

AbsoluteOptions[FindClusters[datapairs, Method -> Automatic], Method]


Any help would be appreciated.










share|improve this question











$endgroup$











  • $begingroup$
    You might be interested to know you can replace Re[#], Im[#]& with ReIm
    $endgroup$
    – m_goldberg
    Feb 7 at 23:56













5












5








5


2



$begingroup$


I am trying to determine which method mathematica chooses when using FindClusters. The documentation says that it chooses the best one for the data. I have tried to use AbsoluteOptions, which says it returns the options for a command, but it does not seem to be working.



GaussianRandomData[n_Integer, p_, sigma_] := 
Table[p +
Re[#], Im[#]&[RandomReal[NormalDistribution[0, sigma]] E^(I RandomReal[0, 2 π])], n];
datapairs = BlockRandom[SeedRandom[2134];
Join[
GaussianRandomData[100, 2, 1, .3],
GaussianRandomData[100, 1, 1.8, .2],
GaussianRandomData[100, 1, 1.1, .4],
GaussianRandomData[100, 1.75, 1.75, 0.1]]];

AbsoluteOptions[FindClusters[datapairs, Method -> Automatic], Method]


Any help would be appreciated.










share|improve this question











$endgroup$




I am trying to determine which method mathematica chooses when using FindClusters. The documentation says that it chooses the best one for the data. I have tried to use AbsoluteOptions, which says it returns the options for a command, but it does not seem to be working.



GaussianRandomData[n_Integer, p_, sigma_] := 
Table[p +
Re[#], Im[#]&[RandomReal[NormalDistribution[0, sigma]] E^(I RandomReal[0, 2 π])], n];
datapairs = BlockRandom[SeedRandom[2134];
Join[
GaussianRandomData[100, 2, 1, .3],
GaussianRandomData[100, 1, 1.8, .2],
GaussianRandomData[100, 1, 1.1, .4],
GaussianRandomData[100, 1.75, 1.75, 0.1]]];

AbsoluteOptions[FindClusters[datapairs, Method -> Automatic], Method]


Any help would be appreciated.







cluster-analysis






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Feb 7 at 23:53









m_goldberg

86.9k872197




86.9k872197










asked Feb 7 at 19:16









MikeMike

283




283











  • $begingroup$
    You might be interested to know you can replace Re[#], Im[#]& with ReIm
    $endgroup$
    – m_goldberg
    Feb 7 at 23:56
















  • $begingroup$
    You might be interested to know you can replace Re[#], Im[#]& with ReIm
    $endgroup$
    – m_goldberg
    Feb 7 at 23:56















$begingroup$
You might be interested to know you can replace Re[#], Im[#]& with ReIm
$endgroup$
– m_goldberg
Feb 7 at 23:56




$begingroup$
You might be interested to know you can replace Re[#], Im[#]& with ReIm
$endgroup$
– m_goldberg
Feb 7 at 23:56










1 Answer
1






active

oldest

votes


















7












$begingroup$

Using Trace with the option TraceInternal -> True gives:



DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, Method -> Automatic], 
HoldPattern[Rule["Method", _]], TraceInternal -> True]]



"Method"->"GaussianMixture"




If you specify the number of clusters:



DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, 3, Method -> Automatic], 
HoldPattern[Rule["Method", _]], TraceInternal -> True]]



"Method"->"KMeans"




With PerformanceGoal -> "Quality"



DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, 3, Method -> Automatic, 
PerformanceGoal -> "Quality"], HoldPattern[Rule["Method", _]],
TraceInternal -> True]]



"Method"->"KMedoids"




l = RGBColor[1., 0.5544801460824762, 0.12056345655596812`], RGBColor[
1., 0.2818404077149421, 0.1073945311994069], RGBColor[
1., 0.12423838985259317`, 0.19023691956664956`], RGBColor[
0.8, 0.4542154246540884, 0.31688034954543], RGBColor[
0.8, 0.5483770742736782, 0.16977938137471082`], RGBColor[
0.8, 0.03163746197875539, 0.5781619271042624], RGBColor[
0.8, 0.1612089376881538, 0.15737556414394493`], RGBColor[
0.5, 0.8592283961197744, 0.04768022523989446], RGBColor[
0.1544029090531034, 0.5400111921283921, 0.1332688011328087],
RGBColor[0.5550268260924609, 0.6650311925481958, 0.24096295360192643`],
RGBColor[0.8424867588418756, 0.9610747917029776, 0.38159472421539053`],
RGBColor[0.5, 0.6654316628707297, 0.9850955091132039], RGBColor[
0.1726013976586489, 0.7948159289195966, 0.9375970360424373],
RGBColor[0.07338116039584297, 0.6615692536088942, 0.9035903703739081],
RGBColor[0.0396922307314016, 0.06815211658088716, 0.9401879243429714],
RGBColor[0.26561262398696184`, 0.1750699399994622, 0.47868645290098866`];

DeleteDuplicates[Flatten@Trace[FindClusters[l], HoldPattern[Rule["Method", _]],
TraceInternal -> True]]



Method -> DBSCAN




The function MachineLearning`file40Decisions`PackagePrivate`automaticClusterNumberMethods seems to determine the method to be used based on input type, data dimensions and the setting for the option PerformanceGoal:



automaticClusterNumberMethods[type_, performanceGoal_, dims_]:= If[
MachineLearning`file40Decisions`PackagePrivate`vectorSpaceQ[type],
Switch[
performanceGoal, Automatic | "Memory",
If[Greater[Last @ dims, 7],
"DBSCAN", "NeighborhoodContraction", "Agglomerate",
"DBSCAN", "NeighborhoodContraction", "GaussianMixture",
"Agglomerate"
],
"Speed",
"DBSCAN", "GaussianMixture", "NeighborhoodContraction",
"Quality",

"Agglomerate", "DBSCAN", "JarvisPatrick", "MeanShift",
"Spectral", "SpanningTree",
"NeighborhoodContraction", "GaussianMixture"
,
"TrainingSpeed",
"DBSCAN", "NeighborhoodContraction"
],
"DBSCAN", "JarvisPatrick"
];


If the number of clusters is given the function MachineLearning`file40Decisions`PackagePrivate`givenClusterNumberMethods is called to determine the method to be used:



givenClusterNumberMethods[type_, performanceGoal_] := If[
vectorSpaceQ[type],
Switch[
performanceGoal, Automatic | "Memory" | "Speed",
"KMeans", "Agglomerate",
"Quality",
"KMeans", "Agglomerate", "Spectral", "KMedoids",
"TrainingSpeed",
"KMeans"
],
If[MatchQ[type, "Location"],
"KMedoids",
"KMedoids", "Agglomerate"
]
];





share|improve this answer











$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "387"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f191087%2fdetermining-the-method-option-that-findclusters-uses-with-absoluteoptions%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    7












    $begingroup$

    Using Trace with the option TraceInternal -> True gives:



    DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, Method -> Automatic], 
    HoldPattern[Rule["Method", _]], TraceInternal -> True]]



    "Method"->"GaussianMixture"




    If you specify the number of clusters:



    DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, 3, Method -> Automatic], 
    HoldPattern[Rule["Method", _]], TraceInternal -> True]]



    "Method"->"KMeans"




    With PerformanceGoal -> "Quality"



    DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, 3, Method -> Automatic, 
    PerformanceGoal -> "Quality"], HoldPattern[Rule["Method", _]],
    TraceInternal -> True]]



    "Method"->"KMedoids"




    l = RGBColor[1., 0.5544801460824762, 0.12056345655596812`], RGBColor[
    1., 0.2818404077149421, 0.1073945311994069], RGBColor[
    1., 0.12423838985259317`, 0.19023691956664956`], RGBColor[
    0.8, 0.4542154246540884, 0.31688034954543], RGBColor[
    0.8, 0.5483770742736782, 0.16977938137471082`], RGBColor[
    0.8, 0.03163746197875539, 0.5781619271042624], RGBColor[
    0.8, 0.1612089376881538, 0.15737556414394493`], RGBColor[
    0.5, 0.8592283961197744, 0.04768022523989446], RGBColor[
    0.1544029090531034, 0.5400111921283921, 0.1332688011328087],
    RGBColor[0.5550268260924609, 0.6650311925481958, 0.24096295360192643`],
    RGBColor[0.8424867588418756, 0.9610747917029776, 0.38159472421539053`],
    RGBColor[0.5, 0.6654316628707297, 0.9850955091132039], RGBColor[
    0.1726013976586489, 0.7948159289195966, 0.9375970360424373],
    RGBColor[0.07338116039584297, 0.6615692536088942, 0.9035903703739081],
    RGBColor[0.0396922307314016, 0.06815211658088716, 0.9401879243429714],
    RGBColor[0.26561262398696184`, 0.1750699399994622, 0.47868645290098866`];

    DeleteDuplicates[Flatten@Trace[FindClusters[l], HoldPattern[Rule["Method", _]],
    TraceInternal -> True]]



    Method -> DBSCAN




    The function MachineLearning`file40Decisions`PackagePrivate`automaticClusterNumberMethods seems to determine the method to be used based on input type, data dimensions and the setting for the option PerformanceGoal:



    automaticClusterNumberMethods[type_, performanceGoal_, dims_]:= If[
    MachineLearning`file40Decisions`PackagePrivate`vectorSpaceQ[type],
    Switch[
    performanceGoal, Automatic | "Memory",
    If[Greater[Last @ dims, 7],
    "DBSCAN", "NeighborhoodContraction", "Agglomerate",
    "DBSCAN", "NeighborhoodContraction", "GaussianMixture",
    "Agglomerate"
    ],
    "Speed",
    "DBSCAN", "GaussianMixture", "NeighborhoodContraction",
    "Quality",

    "Agglomerate", "DBSCAN", "JarvisPatrick", "MeanShift",
    "Spectral", "SpanningTree",
    "NeighborhoodContraction", "GaussianMixture"
    ,
    "TrainingSpeed",
    "DBSCAN", "NeighborhoodContraction"
    ],
    "DBSCAN", "JarvisPatrick"
    ];


    If the number of clusters is given the function MachineLearning`file40Decisions`PackagePrivate`givenClusterNumberMethods is called to determine the method to be used:



    givenClusterNumberMethods[type_, performanceGoal_] := If[
    vectorSpaceQ[type],
    Switch[
    performanceGoal, Automatic | "Memory" | "Speed",
    "KMeans", "Agglomerate",
    "Quality",
    "KMeans", "Agglomerate", "Spectral", "KMedoids",
    "TrainingSpeed",
    "KMeans"
    ],
    If[MatchQ[type, "Location"],
    "KMedoids",
    "KMedoids", "Agglomerate"
    ]
    ];





    share|improve this answer











    $endgroup$

















      7












      $begingroup$

      Using Trace with the option TraceInternal -> True gives:



      DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, Method -> Automatic], 
      HoldPattern[Rule["Method", _]], TraceInternal -> True]]



      "Method"->"GaussianMixture"




      If you specify the number of clusters:



      DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, 3, Method -> Automatic], 
      HoldPattern[Rule["Method", _]], TraceInternal -> True]]



      "Method"->"KMeans"




      With PerformanceGoal -> "Quality"



      DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, 3, Method -> Automatic, 
      PerformanceGoal -> "Quality"], HoldPattern[Rule["Method", _]],
      TraceInternal -> True]]



      "Method"->"KMedoids"




      l = RGBColor[1., 0.5544801460824762, 0.12056345655596812`], RGBColor[
      1., 0.2818404077149421, 0.1073945311994069], RGBColor[
      1., 0.12423838985259317`, 0.19023691956664956`], RGBColor[
      0.8, 0.4542154246540884, 0.31688034954543], RGBColor[
      0.8, 0.5483770742736782, 0.16977938137471082`], RGBColor[
      0.8, 0.03163746197875539, 0.5781619271042624], RGBColor[
      0.8, 0.1612089376881538, 0.15737556414394493`], RGBColor[
      0.5, 0.8592283961197744, 0.04768022523989446], RGBColor[
      0.1544029090531034, 0.5400111921283921, 0.1332688011328087],
      RGBColor[0.5550268260924609, 0.6650311925481958, 0.24096295360192643`],
      RGBColor[0.8424867588418756, 0.9610747917029776, 0.38159472421539053`],
      RGBColor[0.5, 0.6654316628707297, 0.9850955091132039], RGBColor[
      0.1726013976586489, 0.7948159289195966, 0.9375970360424373],
      RGBColor[0.07338116039584297, 0.6615692536088942, 0.9035903703739081],
      RGBColor[0.0396922307314016, 0.06815211658088716, 0.9401879243429714],
      RGBColor[0.26561262398696184`, 0.1750699399994622, 0.47868645290098866`];

      DeleteDuplicates[Flatten@Trace[FindClusters[l], HoldPattern[Rule["Method", _]],
      TraceInternal -> True]]



      Method -> DBSCAN




      The function MachineLearning`file40Decisions`PackagePrivate`automaticClusterNumberMethods seems to determine the method to be used based on input type, data dimensions and the setting for the option PerformanceGoal:



      automaticClusterNumberMethods[type_, performanceGoal_, dims_]:= If[
      MachineLearning`file40Decisions`PackagePrivate`vectorSpaceQ[type],
      Switch[
      performanceGoal, Automatic | "Memory",
      If[Greater[Last @ dims, 7],
      "DBSCAN", "NeighborhoodContraction", "Agglomerate",
      "DBSCAN", "NeighborhoodContraction", "GaussianMixture",
      "Agglomerate"
      ],
      "Speed",
      "DBSCAN", "GaussianMixture", "NeighborhoodContraction",
      "Quality",

      "Agglomerate", "DBSCAN", "JarvisPatrick", "MeanShift",
      "Spectral", "SpanningTree",
      "NeighborhoodContraction", "GaussianMixture"
      ,
      "TrainingSpeed",
      "DBSCAN", "NeighborhoodContraction"
      ],
      "DBSCAN", "JarvisPatrick"
      ];


      If the number of clusters is given the function MachineLearning`file40Decisions`PackagePrivate`givenClusterNumberMethods is called to determine the method to be used:



      givenClusterNumberMethods[type_, performanceGoal_] := If[
      vectorSpaceQ[type],
      Switch[
      performanceGoal, Automatic | "Memory" | "Speed",
      "KMeans", "Agglomerate",
      "Quality",
      "KMeans", "Agglomerate", "Spectral", "KMedoids",
      "TrainingSpeed",
      "KMeans"
      ],
      If[MatchQ[type, "Location"],
      "KMedoids",
      "KMedoids", "Agglomerate"
      ]
      ];





      share|improve this answer











      $endgroup$















        7












        7








        7





        $begingroup$

        Using Trace with the option TraceInternal -> True gives:



        DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, Method -> Automatic], 
        HoldPattern[Rule["Method", _]], TraceInternal -> True]]



        "Method"->"GaussianMixture"




        If you specify the number of clusters:



        DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, 3, Method -> Automatic], 
        HoldPattern[Rule["Method", _]], TraceInternal -> True]]



        "Method"->"KMeans"




        With PerformanceGoal -> "Quality"



        DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, 3, Method -> Automatic, 
        PerformanceGoal -> "Quality"], HoldPattern[Rule["Method", _]],
        TraceInternal -> True]]



        "Method"->"KMedoids"




        l = RGBColor[1., 0.5544801460824762, 0.12056345655596812`], RGBColor[
        1., 0.2818404077149421, 0.1073945311994069], RGBColor[
        1., 0.12423838985259317`, 0.19023691956664956`], RGBColor[
        0.8, 0.4542154246540884, 0.31688034954543], RGBColor[
        0.8, 0.5483770742736782, 0.16977938137471082`], RGBColor[
        0.8, 0.03163746197875539, 0.5781619271042624], RGBColor[
        0.8, 0.1612089376881538, 0.15737556414394493`], RGBColor[
        0.5, 0.8592283961197744, 0.04768022523989446], RGBColor[
        0.1544029090531034, 0.5400111921283921, 0.1332688011328087],
        RGBColor[0.5550268260924609, 0.6650311925481958, 0.24096295360192643`],
        RGBColor[0.8424867588418756, 0.9610747917029776, 0.38159472421539053`],
        RGBColor[0.5, 0.6654316628707297, 0.9850955091132039], RGBColor[
        0.1726013976586489, 0.7948159289195966, 0.9375970360424373],
        RGBColor[0.07338116039584297, 0.6615692536088942, 0.9035903703739081],
        RGBColor[0.0396922307314016, 0.06815211658088716, 0.9401879243429714],
        RGBColor[0.26561262398696184`, 0.1750699399994622, 0.47868645290098866`];

        DeleteDuplicates[Flatten@Trace[FindClusters[l], HoldPattern[Rule["Method", _]],
        TraceInternal -> True]]



        Method -> DBSCAN




        The function MachineLearning`file40Decisions`PackagePrivate`automaticClusterNumberMethods seems to determine the method to be used based on input type, data dimensions and the setting for the option PerformanceGoal:



        automaticClusterNumberMethods[type_, performanceGoal_, dims_]:= If[
        MachineLearning`file40Decisions`PackagePrivate`vectorSpaceQ[type],
        Switch[
        performanceGoal, Automatic | "Memory",
        If[Greater[Last @ dims, 7],
        "DBSCAN", "NeighborhoodContraction", "Agglomerate",
        "DBSCAN", "NeighborhoodContraction", "GaussianMixture",
        "Agglomerate"
        ],
        "Speed",
        "DBSCAN", "GaussianMixture", "NeighborhoodContraction",
        "Quality",

        "Agglomerate", "DBSCAN", "JarvisPatrick", "MeanShift",
        "Spectral", "SpanningTree",
        "NeighborhoodContraction", "GaussianMixture"
        ,
        "TrainingSpeed",
        "DBSCAN", "NeighborhoodContraction"
        ],
        "DBSCAN", "JarvisPatrick"
        ];


        If the number of clusters is given the function MachineLearning`file40Decisions`PackagePrivate`givenClusterNumberMethods is called to determine the method to be used:



        givenClusterNumberMethods[type_, performanceGoal_] := If[
        vectorSpaceQ[type],
        Switch[
        performanceGoal, Automatic | "Memory" | "Speed",
        "KMeans", "Agglomerate",
        "Quality",
        "KMeans", "Agglomerate", "Spectral", "KMedoids",
        "TrainingSpeed",
        "KMeans"
        ],
        If[MatchQ[type, "Location"],
        "KMedoids",
        "KMedoids", "Agglomerate"
        ]
        ];





        share|improve this answer











        $endgroup$



        Using Trace with the option TraceInternal -> True gives:



        DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, Method -> Automatic], 
        HoldPattern[Rule["Method", _]], TraceInternal -> True]]



        "Method"->"GaussianMixture"




        If you specify the number of clusters:



        DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, 3, Method -> Automatic], 
        HoldPattern[Rule["Method", _]], TraceInternal -> True]]



        "Method"->"KMeans"




        With PerformanceGoal -> "Quality"



        DeleteDuplicates[Flatten@Trace[FindClusters[datapairs, 3, Method -> Automatic, 
        PerformanceGoal -> "Quality"], HoldPattern[Rule["Method", _]],
        TraceInternal -> True]]



        "Method"->"KMedoids"




        l = RGBColor[1., 0.5544801460824762, 0.12056345655596812`], RGBColor[
        1., 0.2818404077149421, 0.1073945311994069], RGBColor[
        1., 0.12423838985259317`, 0.19023691956664956`], RGBColor[
        0.8, 0.4542154246540884, 0.31688034954543], RGBColor[
        0.8, 0.5483770742736782, 0.16977938137471082`], RGBColor[
        0.8, 0.03163746197875539, 0.5781619271042624], RGBColor[
        0.8, 0.1612089376881538, 0.15737556414394493`], RGBColor[
        0.5, 0.8592283961197744, 0.04768022523989446], RGBColor[
        0.1544029090531034, 0.5400111921283921, 0.1332688011328087],
        RGBColor[0.5550268260924609, 0.6650311925481958, 0.24096295360192643`],
        RGBColor[0.8424867588418756, 0.9610747917029776, 0.38159472421539053`],
        RGBColor[0.5, 0.6654316628707297, 0.9850955091132039], RGBColor[
        0.1726013976586489, 0.7948159289195966, 0.9375970360424373],
        RGBColor[0.07338116039584297, 0.6615692536088942, 0.9035903703739081],
        RGBColor[0.0396922307314016, 0.06815211658088716, 0.9401879243429714],
        RGBColor[0.26561262398696184`, 0.1750699399994622, 0.47868645290098866`];

        DeleteDuplicates[Flatten@Trace[FindClusters[l], HoldPattern[Rule["Method", _]],
        TraceInternal -> True]]



        Method -> DBSCAN




        The function MachineLearning`file40Decisions`PackagePrivate`automaticClusterNumberMethods seems to determine the method to be used based on input type, data dimensions and the setting for the option PerformanceGoal:



        automaticClusterNumberMethods[type_, performanceGoal_, dims_]:= If[
        MachineLearning`file40Decisions`PackagePrivate`vectorSpaceQ[type],
        Switch[
        performanceGoal, Automatic | "Memory",
        If[Greater[Last @ dims, 7],
        "DBSCAN", "NeighborhoodContraction", "Agglomerate",
        "DBSCAN", "NeighborhoodContraction", "GaussianMixture",
        "Agglomerate"
        ],
        "Speed",
        "DBSCAN", "GaussianMixture", "NeighborhoodContraction",
        "Quality",

        "Agglomerate", "DBSCAN", "JarvisPatrick", "MeanShift",
        "Spectral", "SpanningTree",
        "NeighborhoodContraction", "GaussianMixture"
        ,
        "TrainingSpeed",
        "DBSCAN", "NeighborhoodContraction"
        ],
        "DBSCAN", "JarvisPatrick"
        ];


        If the number of clusters is given the function MachineLearning`file40Decisions`PackagePrivate`givenClusterNumberMethods is called to determine the method to be used:



        givenClusterNumberMethods[type_, performanceGoal_] := If[
        vectorSpaceQ[type],
        Switch[
        performanceGoal, Automatic | "Memory" | "Speed",
        "KMeans", "Agglomerate",
        "Quality",
        "KMeans", "Agglomerate", "Spectral", "KMedoids",
        "TrainingSpeed",
        "KMeans"
        ],
        If[MatchQ[type, "Location"],
        "KMedoids",
        "KMedoids", "Agglomerate"
        ]
        ];






        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited Feb 7 at 21:40

























        answered Feb 7 at 21:23









        kglrkglr

        186k10203422




        186k10203422



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematica Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f191087%2fdetermining-the-method-option-that-findclusters-uses-with-absoluteoptions%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown






            Popular posts from this blog

            How to check contact read email or not when send email to Individual?

            How many registers does an x86_64 CPU actually have?

            Nur Jahan