Waveform






Sine, square, triangle, and sawtooth waveforms




A sine, square, and sawtooth wave at 440 Hz




A composite waveform that is shaped like a teardrop.




A waveform generated by a synthesizer


A waveform is a variable that varies with time, usually representing a voltage or current.[1]


Waveforms are conventionally graphed with time on the horizontal axis.


In electronics, an oscilloscope can be used to visualize a waveform on a screen. A waveform can be depicted by a graph that shows the changes in a recorded signal's amplitude over the duration of recording.[2] The amplitude of the signal is measured on the ydisplaystyle yy-axis (vertical), and time on the xdisplaystyle xx-axis (horizontal).[2]




Contents





  • 1 Examples


  • 2 See also


  • 3 References


  • 4 Further reading


  • 5 External links




Examples


Simple examples of periodic waveforms include the following, where tdisplaystyle tt is time, λdisplaystyle lambda lambda is wavelength, adisplaystyle aa is amplitude and ϕdisplaystyle phi phi is phase:



  • Sine wave(t,λ,a,ϕ)=asin⁡2πt−ϕλdisplaystyle (t,lambda ,a,phi )=asin frac 2pi t-phi lambda displaystyle (t,lambda ,a,phi )=asin frac 2pi t-phi lambda . The amplitude of the waveform follows a trigonometric sine function with respect to time.


  • Square wave(t,λ,a,ϕ)={a,(t−ϕ)modλ<duty−a,otherwisedisplaystyle (t,lambda ,a,phi )=begincasesa,&(t-phi )bmod lambda <textduty\-a,&textotherwiseendcasesdisplaystyle (t,lambda ,a,phi )=begincasesa,&(t-phi )bmod lambda <textduty\-a,&textotherwiseendcases. This waveform is commonly used to represent digital information. A square wave of constant period contains odd harmonics that decrease at −6 dB/octave.


  • Triangle wave(t,λ,a,ϕ)=2aπarcsin⁡sin⁡2πt−ϕλdisplaystyle (t,lambda ,a,phi )=frac 2api arcsin sin frac 2pi t-phi lambda displaystyle (t,lambda ,a,phi )=frac 2api arcsin sin frac 2pi t-phi lambda . It contains odd harmonics that decrease at −12 dB/octave.


  • Sawtooth wave(t,λ,a,ϕ)=2aπarctan⁡tan⁡2πt−ϕ2λdisplaystyle (t,lambda ,a,phi )=frac 2api arctan tan frac 2pi t-phi 2lambda displaystyle (t,lambda ,a,phi )=frac 2api arctan tan frac 2pi t-phi 2lambda . This looks like the teeth of a saw. Found often in time bases for display scanning. It is used as the starting point for subtractive synthesis, as a sawtooth wave of constant period contains odd and even harmonics that decrease at −6 dB/octave.

The Fourier series describes the decomposition of periodic waveforms, such that any periodic waveform can be formed by the sum of a (possibly infinite) set of fundamental and harmonic components. Finite-energy non-periodic waveforms can be analyzed into sinusoids by the Fourier transform.


Other periodic waveforms are often called composite waveforms and can often be described as a combination of a number of sinusoidal waves or other basis functions added together.



See also


  • AC waveform

  • Arbitrary waveform generator

  • Crest factor

  • Frequency domain

  • Phase offset modulation

  • Spectrum analyzer

  • Waveform monitor

  • Waveform viewer

  • Wave packet


References




  1. ^ David Crecraft, David Gorham, Electronics, 2nd ed., .mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em
    ISBN 0748770364, CRC Press, 2002, p. 62



  2. ^ ab "Waveform Definition". techterms.com. Retrieved 2015-12-09.




Further reading


  • Yuchuan Wei, Qishan Zhang. Common Waveform Analysis: A New And Practical Generalization of Fourier Analysis. Springer US, Aug 31, 2000

  • Hao He, Jian Li, and Petre Stoica. Waveform design for active sensing systems: a computational approach. Cambridge University Press, 2012.

  • Solomon W. Golomb, and Guang Gong. Signal design for good correlation: for wireless communication, cryptography, and radar. Cambridge University Press, 2005.

  • Jayant, Nuggehally S and Noll, Peter. Digital coding of waveforms: principles and applications to speech and video. Englewood Cliffs, NJ, 1984.

  • M. Soltanalian. Signal Design for Active Sensing and Communications. Uppsala Dissertations from the Faculty of Science and Technology (printed by Elanders Sverige AB), 2014.

  • Nadav Levanon, and Eli Mozeson. Radar signals. Wiley. com, 2004.

  • Jian Li, and Petre Stoica, eds. Robust adaptive beamforming. New Jersey: John Wiley, 2006.

  • Fulvio Gini, Antonio De Maio, and Lee Patton, eds. Waveform design and diversity for advanced radar systems. Institution of engineering and technology, 2012.

  • John J. Benedetto, Ioannis Konstantinidis, and Muralidhar Rangaswamy. "Phase-coded waveforms and their design." IEEE Signal Processing Magazine, 26.1 (2009): 22-31.


External links





  • Collection of single cycle waveforms sampled from various sources







Popular posts from this blog

How to check contact read email or not when send email to Individual?

Displaying single band from multi-band raster using QGIS

How many registers does an x86_64 CPU actually have?