Tungsten



chemical element with atomic number 74






















































































Tungsten,  74W
Wolfram evaporated crystals and 1cm3 cube.jpg
General properties
Pronunciation
/ˈtʌŋstən/(TUNG-stən)
Alternative namewolfram, pronounced: /ˈwʊlfrəm/ (WUUL-frəm)
Appearancegrayish white, lustrous

Standard atomic weight.mw-parser-output .noboldfont-weight:normal
(Ar, standard)

7002183840000000000♠183.84(1)[1]
Tungsten in the periodic table



































































































































Hydrogen


Helium

Lithium

Beryllium


Boron

Carbon

Nitrogen

Oxygen

Fluorine

Neon

Sodium

Magnesium


Aluminium

Silicon

Phosphorus

Sulfur

Chlorine

Argon

Potassium

Calcium

Scandium


Titanium

Vanadium

Chromium

Manganese

Iron

Cobalt

Nickel

Copper

Zinc

Gallium

Germanium

Arsenic

Selenium

Bromine

Krypton

Rubidium

Strontium

Yttrium



Zirconium

Niobium

Molybdenum

Technetium

Ruthenium

Rhodium

Palladium

Silver

Cadmium

Indium

Tin

Antimony

Tellurium

Iodine

Xenon

Caesium

Barium

Lanthanum

Cerium

Praseodymium

Neodymium

Promethium

Samarium

Europium

Gadolinium

Terbium

Dysprosium

Holmium

Erbium

Thulium

Ytterbium

Lutetium

Hafnium

Tantalum

Tungsten

Rhenium

Osmium

Iridium

Platinum

Gold

Mercury (element)

Thallium

Lead

Bismuth

Polonium

Astatine

Radon

Francium

Radium

Actinium

Thorium

Protactinium

Uranium

Neptunium

Plutonium

Americium

Curium

Berkelium

Californium

Einsteinium

Fermium

Mendelevium

Nobelium

Lawrencium

Rutherfordium

Dubnium

Seaborgium

Bohrium

Hassium

Meitnerium

Darmstadtium

Roentgenium

Copernicium

Nihonium

Flerovium

Moscovium

Livermorium

Tennessine

Oganesson


Mo

W

Sg

tantalum ← tungsten → rhenium
Atomic number (Z)74
Groupgroup 6
Period
period 6
Block
d-block
Element category
  transition metal
Electron configuration[Xe] 4f14 5d4 6s2[2]
Electrons per shell
2, 8, 18, 32, 12, 2
Physical properties

Phase
at STP
solid
Melting point3695 K ​(3422 °C, ​6192 °F)
Boiling point6203 K ​(5930 °C, ​10706 °F)

Density (near r.t.)
19.3 g/cm3
when liquid (at m.p.)17.6 g/cm3
Heat of fusion52.31 kJ/mol[3][4]
Heat of vaporization774 kJ/mol
Molar heat capacity24.27 J/(mol·K)

Vapor pressure
















P (Pa)
1
10
100
1 k
10 k
100 k
at T (K)
3477
3773
4137
4579
5127
5823

Atomic properties
Oxidation states−4, −2, −1, 0, +1, +2, +3, +4, +5, +6 (a mildly acidic oxide)
ElectronegativityPauling scale: 2.36
Ionization energies
  • 1st: 770 kJ/mol

  • 2nd: 1700 kJ/mol


Atomic radiusempirical: 139 pm
Covalent radius162±7 pm

Color lines in a spectral range

Spectral lines of tungsten
Other properties
Crystal structure ​body-centered cubic (bcc)
Body-centered cubic crystal structure for tungsten


Speed of sound thin rod
4620 m/s (at r.t.) (annealed)
Thermal expansion4.5 µm/(m·K) (at 25 °C)
Thermal conductivity173 W/(m·K)
Electrical resistivity52.8 nΩ·m (at 20 °C)
Magnetic ordering
paramagnetic[5]
Magnetic susceptibility+59.0·10−6 cm3/mol (298 K)[6]
Young's modulus411 GPa
Shear modulus161 GPa
Bulk modulus310 GPa
Poisson ratio0.28
Mohs hardness7.5
Vickers hardness3430–4600 MPa
Brinell hardness2000–4000 MPa
CAS Number7440-33-7
History
Discovery
Carl Wilhelm Scheele (1781)
First isolation
Juan José Elhuyar and Fausto Elhuyar (1783)
Named by
Torbern Bergman (1781)
Main isotopes of tungsten


































Iso­tope

Abun­dance

Half-life
(t1/2)

Decay mode

Pro­duct

180W
0.12%
1.8×1018 y

α

176Hf

181W

syn
121.2 d

ε

181Ta

182W
26.50%

stable

183W
14.31%
stable

184W
30.64%
stable

185W
syn
75.1 d

β

185Re

186W
28.43%
stable

| references

Tungsten, or wolfram,[7][8] is a chemical element with symbol W and atomic number 74. The name tungsten comes from the former Swedish name for the tungstate mineral scheelite, tung sten or "heavy stone".[9] Tungsten is a rare metal found naturally on Earth almost exclusively combined with other elements in chemical compounds rather than alone. It was identified as a new element in 1781 and first isolated as a metal in 1783. Its important ores include wolframite and scheelite.


The free element is remarkable for its robustness, especially the fact that it has the highest melting point of all the elements discovered, melting at 3422 °C (6192 °F, 3695 K). It also has the highest boiling point, at 5930 °C (10706 °F, 6203 K).[10] Its density is 19.3 times that of water, comparable to that of uranium and gold, and much higher (about 1.7 times) than that of lead.[11] Polycrystalline tungsten is an intrinsically brittle[12][13] and hard material (under standard conditions, when uncombined), making it difficult to work. However, pure single-crystalline tungsten is more ductile and can be cut with a hard-steel hacksaw.[14]


Tungsten's many alloys have numerous applications, including incandescent light bulb filaments, X-ray tubes (as both the filament and target), electrodes in gas tungsten arc welding, superalloys, and radiation shielding. Tungsten's hardness and high density give it military applications in penetrating projectiles. Tungsten compounds are also often used as industrial catalysts.


Tungsten is the only metal from the third transition series that is known to occur in biomolecules that are found in a few species of bacteria and archaea. It is the heaviest element known to be essential to any living organism.[15] Tungsten interferes with molybdenum and copper metabolism and is somewhat toxic to animal life.[16][17]




Contents





  • 1 Characteristics

    • 1.1 Physical properties


    • 1.2 Isotopes


    • 1.3 Chemical properties



  • 2 History

    • 2.1 Etymology



  • 3 Occurrence


  • 4 Chemical compounds


  • 5 Production


  • 6 Applications

    • 6.1 Hard materials


    • 6.2 Alloys


    • 6.3 Armaments


    • 6.4 Chemical applications


    • 6.5 Niche uses


    • 6.6 Gold substitution


    • 6.7 Electronics


    • 6.8 Nanowires



  • 7 Biological role

    • 7.1 In archaea



  • 8 Health factors


  • 9 Patent claim


  • 10 See also


  • 11 References


  • 12 External links




Characteristics



Physical properties


In its raw form, tungsten is a hard steel-grey metal that is often brittle and hard to work. If made very pure, tungsten retains its hardness (which exceeds that of many steels), and becomes malleable enough that it can be worked easily.[14] It is worked by forging, drawing, or extruding. Tungsten objects are also commonly formed by sintering.


Of all metals in pure form, tungsten has the highest melting point (3422 °C, 6192 °F), lowest vapor pressure (at temperatures above 1650 °C, 3000 °F), and the highest tensile strength.[18] Although carbon remains solid at higher temperatures than tungsten, carbon sublimes at atmospheric pressure instead of melting, so it has no melting point. Tungsten has the lowest coefficient of thermal expansion of any pure metal. The low thermal expansion and high melting point and tensile strength of tungsten originate from strong covalent bonds formed between tungsten atoms by the 5d electrons.[19]
Alloying small quantities of tungsten with steel greatly increases its toughness.[11]


Tungsten exists in two major crystalline forms: α and β. The former has a body-centered cubic structure and is the more stable form. The structure of the β phase is called A15 cubic; it is metastable, but can coexist with the α phase at ambient conditions owing to non-equilibrium synthesis or stabilization by impurities. Contrary to the α phase which crystallizes in isometric grains, the β form exhibits a columnar habit. The α phase has one third of the electrical resistivity[20] and a much lower superconducting transition temperature TC relative to the β phase: ca. 0.015 K vs. 1–4 K; mixing the two phases allows obtaining intermediate TC values.[21][22] The TC value can also be raised by alloying tungsten with another metal (e.g. 7.9 K for W-Tc).[23] Such tungsten alloys are sometimes used in low-temperature superconducting circuits.[24][25][26]



Isotopes



Naturally occurring tungsten consists of five isotopes whose half-lives are so long that they can be considered stable. Theoretically, all five can decay into isotopes of element 72 (hafnium) by alpha emission, but only 180W has been observed to do so with a half-life of 7018180000000000000♠(1.8±0.2)×1018 years;[27][28] on average, this yields about two alpha decays of 180W per gram of natural tungsten per year.[29] The other naturally occurring isotopes have not been observed to decay, constraining their half-lives to be at least 4 × 1021 years.


Another 30 artificial radioisotopes of tungsten have been characterized, the most stable of which are 181W with a half-life of 121.2 days, 185W with a half-life of 75.1 days, 188W with a half-life of 69.4 days, 178W with a half-life of 21.6 days, and 187W with a half-life of 23.72 h.[29] All of the remaining radioactive isotopes have half-lives of less than 3 hours, and most of these have half-lives below 8 minutes.[29] Tungsten also has 4 meta states, the most stable being 179mW (t1/2 6.4 minutes).



Chemical properties


Elemental tungsten resists attack by oxygen, acids, and alkalis.[30]


The most common formal oxidation state of tungsten is +6, but it exhibits all oxidation states from −2 to +6.[30][31] Tungsten typically combines with oxygen to form the yellow tungstic oxide, WO3, which dissolves in aqueous alkaline solutions to form tungstate ions, WO2−
4
.


Tungsten carbides (W2C and WC) are produced by heating powdered tungsten with carbon. W2C is resistant to chemical attack, although it reacts strongly with chlorine to form tungsten hexachloride (WCl6).[11]


In aqueous solution, tungstate gives the heteropoly acids and polyoxometalate anions under neutral and acidic conditions. As tungstate is progressively treated with acid, it first yields the soluble, metastable "paratungstate A" anion, W
7
O6–
24
, which over time converts to the less soluble "paratungstate B" anion, H
2
W
12
O10–
42
.[32] Further acidification produces the very soluble metatungstate anion, H
2
W
12
O6–
40
, after which equilibrium is reached. The metatungstate ion exists as a symmetric cluster of twelve tungsten-oxygen octahedra known as the Keggin anion. Many other polyoxometalate anions exist as metastable species. The inclusion of a different atom such as phosphorus in place of the two central hydrogens in metatungstate produces a wide variety of heteropoly acids, such as phosphotungstic acid H3PW12O40.


Tungsten trioxide can form intercalation compounds with alkali metals. These are known as bronzes; an example is sodium tungsten bronze.



History


In 1781, Carl Wilhelm Scheele discovered that a new acid, tungstic acid, could be made from scheelite (at the time named tungsten).[33] Scheele and Torbern Bergman suggested that it might be possible to obtain a new metal by reducing this acid.[34] In 1783, José and Fausto Elhuyar found an acid made from wolframite that was identical to tungstic acid. Later that year, at the Royal Basque Society in the town of Bergara, Spain, the brothers succeeded in isolating tungsten by reduction of this acid with charcoal, and they are credited with the discovery of the element.[35][36][37]


The strategic value of tungsten came to notice in the early 20th century. British authorities acted in 1912 to free the Carrock mine from the German owned Cumbrian Mining Company and, during World War I, restrict German access elsewhere.[38] In World War II, tungsten played a more significant role in background political dealings. Portugal, as the main European source of the element, was put under pressure from both sides, because of its deposits of wolframite ore at Panasqueira. Tungsten's desirable properties such as resistance to high temperatures, its hardness and density, and its strengthening of alloys made it an important raw material for the arms industry,[39][40] both as a constituent of weapons and equipment and employed in production itself, e.g., in tungsten carbide cutting tools for machining steel.



Etymology


The name "tungsten" (from the Swedish tung sten, "heavy stone") is used in English, French, and many other languages as the name of the element, but not in the Nordic countries. "Tungsten" was the old Swedish name for the mineral scheelite. "Wolfram" (or "volfram") is used in most European (especially Germanic and Slavic) languages and is derived from the mineral wolframite, which is the origin of the chemical symbol W.[14] The name "wolframite" is derived from German "wolf rahm" ("wolf soot" or "wolf cream"), the name given to tungsten by Johan Gottschalk Wallerius in 1747. This, in turn, derives from "lupi spuma", the name Georg Agricola used for the element in 1546, which translates into English as "wolf's froth" and is a reference to the large amounts of tin consumed by the mineral during its extraction.[41]



Occurrence




Wolframite mineral, with a scale in cm.


Tungsten is found mainly in the minerals wolframite (iron–manganese tungstate (Fe,Mn)WO4, which is a solid solution of the two minerals ferberite FeWO4, and hübnerite MnWO4) and scheelite (calcium tungstate (CaWO4). Other tungsten minerals range in their level of abundance from moderate to very rare, and have almost no economical value.



Chemical compounds



Tungsten forms chemical compounds in oxidation states from -II to VI. Higher oxidation states, always as oxides, are relevant to its terrestrial occurrence and its biological roles, mid-level oxidation states are often associated with metal clusters, and very low oxidation states are typically associated with CO complexes. Mo and W chemistry shows strong similarities. The relative rarity of tungsten(III), for example, contrasts with the pervasiveness of the chromium(III) compounds. The highest oxidation state is seen in tungsten(VI) oxide (WO3).[42] The trioxide, which is volatile at high temperatures, is the precursor to virtually all other Mo compounds as well as alloys. Molybdenum has several oxidation states, the most stable being +4 and +6.


Tungsten(VI) oxide is soluble in aqueous base , forming tungstate (WO42−). This oxyanion condenses at lower pH values, forming polyoxotungstates.[43]




Structure of W6Cl18 ("tungsten trichloride").


The broad range of oxidation states of tungsten is reflected in it various chlorides:[42]



  • Tungsten(II) chloride, which exists as the hexamer W6Cl12


  • Tungsten(III) chloride, which exists as the hexamer W6Cl18


  • Tungsten(IV) chloride, WCl4, a black solid, which adopts a polymeric structure.


  • Tungsten(V) chloride WCl5, a black solid which adopts a dimeric structure.


  • Tungsten(VI) chloride WCl6, which contrasts with the instability of MoCl6.

Organotungsten compounds are numerous and also span a range of oxidation states. Notable examples include the trigonal prismatic W(CH3)6 and octahedral W(CO)6.



Production




Tungsten mined in 2012


About 61,300 tonnes of tungsten concentrates were produced in the year 2009,[44] and in 2010, world production of tungsten was about 68,000 tonnes.[45] The main producers were as follows (data in tonnes):[46]













































































































Major producers of tungsten[45]
Country
Production (tonnes)
2009201020112012

 China
51,00059,00061,80064,000

 Russia
2,6652,7853,3143,537

 Canada
1,9644201,9662,194

 Bolivia
1,0231,2041,1241,247

 Vietnam
7251,1501,6351,050

 Portugal
823799819763

 Austria
887977861706

 Rwanda
380330520700

 Spain
225240497542

 Brazil
192166244381

 Australia
331815290

 Peru
502571439276

 Burundi
110100165190

 Myanmar
874163140140

 North Korea
100110110100

 DR Congo
200257095

 Thailand
19030016080

 Mongolia
39201366

 Uganda
744821
Total61,20068,40073,90076,400


Tungsten mining in Rwanda forms an important part of the country's economy.


There is additional production in the U.S., but the amount is proprietary company information. U.S. reserves are 140,000 tonnes.[46] US industrial use of wolfram is 20,000 tonnes: 15,000 tonnes are imported and the remaining 5,000 tonnes come from domestic recycling.[47]


Tungsten is considered to be a conflict mineral due to the unethical mining practices observed in the Democratic Republic of the Congo.[48][49]


There is a large deposit of tungsten ore on the edge of Dartmoor in the United Kingdom, which was exploited during World War I and World War II as the Hemerdon Mine. With recent increases in tungsten prices, as of 2014 this mine has been reactivated.[50]


Tungsten is extracted from its ores in several stages. The ore is eventually converted to tungsten(VI) oxide (WO3), which is heated with hydrogen or carbon to produce powdered tungsten.[34] Because of tungsten's high melting point, it is not commercially feasible to cast tungsten ingots. Instead, powdered tungsten is mixed with small amounts of powdered nickel or other metals, and sintered. During the sintering process, the nickel diffuses into the tungsten, producing an alloy.


Tungsten can also be extracted by hydrogen reduction of WF6:


WF6 + 3 H2 → W + 6 HF

or pyrolytic decomposition:[51]


WF6 → W + 3 F2Hr = +)

Tungsten is not traded as a futures contract and cannot be tracked on exchanges like the London Metal Exchange. The prices are usually quoted for tungsten concentrate or WO3. If converted to the metal equivalent, they were about US$19 per kilogram in 2009.[44]



Applications




Close-up of a tungsten filament inside a halogen lamp





Tungsten carbide ring (jewelry)




1 kilogram tungsten cylinder (scale shown below)


Approximately half of the tungsten is consumed for the production of hard materials – namely tungsten carbide – with the remaining major use being in alloys and steels. Less than 10% is used in other chemical compounds.[52]



Hard materials


Tungsten is mainly used in the production of hard materials based on tungsten carbide, one of the hardest carbides, with a melting point of 2770 °C. WC is an efficient electrical conductor, but W2C is less so. WC is used to make wear-resistant abrasives, and "carbide" cutting tools such as knives, drills, circular saws, milling and turning tools used by the metalworking, woodworking, mining, petroleum and construction industries.[11] Carbide tooling is actually a ceramic/metal composite, where metallic cobalt acts as a binding (matrix) material to hold the WC particles in place. This type of industrial use accounts for about 60% of current tungsten consumption.[53]


The jewelry industry makes rings of sintered tungsten carbide, tungsten carbide/metal composites, and also metallic tungsten.[54] WC/metal composite rings use nickel as the metal matrix in place of cobalt because it takes a higher luster when polished. Sometimes manufacturers or retailers refer to tungsten carbide as a metal, but it is a ceramic.[55] Because of tungsten carbide's hardness, rings made of this material are extremely abrasion resistant, and will hold a burnished finish longer than rings made of metallic tungsten. Tungsten carbide rings are brittle, however, and may crack under a sharp blow.[56]



Alloys



The hardness and density of tungsten are applied in obtaining heavy metal alloys. A good example is high speed steel, which can contain as much as 18% tungsten.[57] Tungsten's high melting point makes tungsten a good material for applications like rocket nozzles, for example in the UGM-27 Polaris submarine-launched ballistic missile.[58] Tungsten alloys are used in a wide range of different applications, including the aerospace and automotive industries and radiation shielding.[59]Superalloys containing tungsten, such as Hastelloy and Stellite, are used in turbine blades and wear-resistant parts and coatings.


Quenched (martensitic) tungsten steel (approx. 5.5% to 7.0% W with 0.5% to 0.7% C) was used for making hard permanent magnets, due to its high remanence and coercivity, as noted by John Hopkinson (1849 - 1898) as early as 1886. The magnetic properties of a metal or an alloy are very sensitive to microstructure. For example, while the element tungsten is not ferromagnetic (but iron is), when present in steel in these proportions, it stabilizes the martensite phase, which has an enhanced ferromagnetism, as compared to the ferrite (iron) phase, due to its greater resistance to magnetic domain wall motion.


Tungsten's heat resistance makes it useful in arc welding applications when combined with another highly-conductive metal such as silver or copper. The silver or copper provides the necessary conductivity and the tungsten allows the welding rod to withstand the high-temperatures of the arc welding environment.


Mallory metal is proprietary name for an alloy of tungsten, with other metallic elements added to improve machining.[60]



Armaments


Tungsten, usually alloyed with nickel and iron or cobalt to form heavy alloys, is used in kinetic energy penetrators as an alternative to depleted uranium, in applications where uranium's radioactivity is problematic even in depleted form, or where uranium's additional pyrophoric properties are not desired (for example, in ordinary small arms bullets designed to penetrate body armor). Similarly, tungsten alloys have also been used in cannon shells, grenades and missiles, to create supersonic shrapnel. Germany used tungsten during World War II to produce shells for anti-tank gun designs using the Gerlich squeeze bore principle to achieve very high muzzle velocity and enhanced armor penetration from comparatively small caliber and light weight field artillery. The weapons were highly effective but a shortage of tungsten used in the shell core limited that effectiveness.


Tungsten has also been used in Dense Inert Metal Explosives, which use it as dense powder to reduce collateral damage while increasing the lethality of explosives within a small radius.[61]



Chemical applications


Tungsten(IV) sulfide is a high temperature lubricant and is a component of catalysts for hydrodesulfurization.[62] MoS2 is more commonly used for such applications.[63]


Tungsten oxides are used in ceramic glazes and calcium/magnesium tungstates are used widely in fluorescent lighting. Crystal tungstates are used as scintillation detectors in nuclear physics and nuclear medicine. Other salts that contain tungsten are used in the chemical and tanning industries.[18]
Tungsten oxide (WO3) is incorporated into selective catalytic reduction (SCR) catalysts found in coal-fired power plants. These catalysts convert nitrogen oxides (NOx) to nitrogen (N2) and water (H2O) using ammonia (NH3). The tungsten oxide helps with the physical strength of the catalyst and extends catalyst life.[64]



Niche uses


Applications requiring its high density include weights, counterweights, ballast keels for yachts, tail ballast for commercial aircraft, and as ballast in race cars for NASCAR and Formula One; depleted uranium is also used for these purposes, due to similarly high density. Seventy-five-kg blocks of tungsten were used as "cruise balance mass devices" on the entry vehicle portion of the 2012 Mars Science Laboratory spacecraft. It is an ideal material to use as a dolly for riveting, where the mass necessary for good results can be achieved in a compact bar. High-density alloys of tungsten with nickel, copper or iron are used in high-quality darts[65] (to allow for a smaller diameter and thus tighter groupings) or for fishing lures (tungsten beads allow the fly to sink rapidly). Tungsten has seen use recently in nozzles for 3D printing; the high wear resistance and thermal conductivity of tungsten carbide improves the printing of abrasive filaments.[66] Some cello C strings are wound with tungsten. The extra density gives this string more projection and often cellists will buy just this string and use it with three strings from a different set.[67][unreliable source?] Tungsten is used as an absorber on the electron telescope on the Cosmic Ray System of the two Voyager spacecraft.[68]


Sodium tungstate is used in Folin-Ciocalteu's reagent, a mixture of different chemicals used in the "Lowry Assay" for protein content analysis.



Gold substitution


Its density, similar to that of gold, allows tungsten to be used in jewelry as an alternative to gold or platinum.[14][69] Metallic tungsten is hypoallergenic, and is harder than gold alloys (though not as hard as tungsten carbide), making it useful for rings that will resist scratching, especially in designs with a brushed finish.


Because the density is so similar to that of gold (tungsten is only 0.36% less dense), and its price of the order of one-thousandth, tungsten can also be used in counterfeiting of gold bars, such as by plating a tungsten bar with gold,[70][71][72] which has been observed since the 1980s,[73] or taking an existing gold bar, drilling holes, and replacing the removed gold with tungsten rods.[74] The densities are not exactly the same, and other properties of gold and tungsten differ, but gold-plated tungsten will pass superficial tests.[70]


Gold-plated tungsten is available commercially from China (the main source of tungsten), both in jewelry and as bars.[75]



Electronics


Because it retains its strength at high temperatures and has a high melting point, elemental tungsten is used in many high-temperature applications,[76] such as light bulb, cathode-ray tube, and vacuum tube filaments, heating elements, and rocket engine nozzles.[14] Its high melting point also makes tungsten suitable for aerospace and high-temperature uses such as electrical, heating, and welding applications, notably in the gas tungsten arc welding process (also called tungsten inert gas (TIG) welding).




Tungsten electrode used in a gas tungsten arc welding torch


Because of its conductive properties and relative chemical inertness, tungsten is also used in electrodes, and in the emitter tips in electron-beam instruments that use field emission guns, such as electron microscopes. In electronics, tungsten is used as an interconnect material in integrated circuits, between the silicon dioxide dielectric material and the transistors. It is used in metallic films, which replace the wiring used in conventional electronics with a coat of tungsten (or molybdenum) on silicon.[51]


The electronic structure of tungsten makes it one of the main sources for X-ray targets,[77][78] and also for shielding from high-energy radiations (such as in the radiopharmaceutical industry for shielding radioactive samples of FDG). It is also used in gamma imaging as a material from which coded apertures are made, due to its excellent shielding properties. Tungsten powder is used as a filler material in plastic composites, which are used as a nontoxic substitute for lead in bullets, shot, and radiation shields. Since this element's thermal expansion is similar to borosilicate glass, it is used for making glass-to-metal seals.[18] In addition to its high melting point, when tungsten is doped with potassium, it leads to an increased shape stability (compared to non-doped tungsten). This ensures that the filament does not sag, and no undesired changes occur.[79]



Nanowires


Through top-down nanofabrication processes, tungsten nanowires have been fabricated and studied since 2002.[80] Due to a particularly high surface to volume ratio, the formation of a surface oxide layer and the single crystal nature of such material, the mechanical properties differ fundamentally from those of bulk tungsten.[81] Such tungsten nanowires have potential applications in nanoelectronics and importantly as pH probes and gas sensors.[82] In similarity to silicon nanowires, tungsten nanowires are frequently produced from a bulk tungsten precursor followed by a thermal oxidation step to control morphology in terms of length and aspect ratio.[83] Using the Deal–Grove model it is possible to predict the oxidation kinetics of nanowires fabricated through such thermal oxidation processing.[84]



Biological role


Tungsten, at atomic number Z = 74, is the heaviest element known to be biologically functional. It is used by some bacteria and archaea,[85] but not in eukaryotes. For example, enzymes called oxidoreductases use tungsten similarly to molybdenum by using it in a tungsten-pterin complex with molybdopterin (molybdopterin, despite its name, does not contain molybdenum, but may complex with either molybdenum or tungsten in use by living organisms). Tungsten-using enzymes typically reduce carboxylic acids to aldehydes.[86] The tungsten oxidoreductases may also catalyse oxidations. The first tungsten-requiring enzyme to be discovered also requires selenium, and in this case the tungsten-selenium pair may function analogously to the molybdenum-sulfur pairing of some molybdenum cofactor-requiring enzymes.[87] One of the enzymes in the oxidoreductase family which sometimes employ tungsten (bacterial formate dehydrogenase H) is known to use a selenium-molybdenum version of molybdopterin.[88]Acetylene hydratase is an unusual metalloenzyme in that it catalyzes a hydration reaction. Two reaction mechanisms have been proposed, in one of which there is a direct interaction between the tungsten atom and the C≡C triple bond.[89] Although a tungsten-containing xanthine dehydrogenase from bacteria has been found to contain tungsten-molydopterin and also non-protein bound selenium, a tungsten-selenium molybdopterin complex has not been definitively described.[90]


In soil, tungsten metal oxidizes to the tungstate anion. It can be selectively or non-selectively imported by some prokaryotic organisms and may substitute for molybdate in certain enzymes. Its effect on the action of these enzymes is in some cases inhibitory and in others positive.[91] The soil's chemistry determines how the tungsten polymerizes; alkaline soils cause monomeric tungstates; acidic soils cause polymeric tungstates.[92]


Sodium tungstate and lead have been studied for their effect on earthworms. Lead was found to be lethal at low levels and sodium tungstate was much less toxic, but the tungstate completely inhibited their reproductive ability.[93]


Tungsten has been studied as a biological copper metabolic antagonist, in a role similar to the action of molybdenum. It has been found that tetrathiotungstates may be used as biological copper chelation chemicals, similar to the tetrathiomolybdates.[94]



In archaea


Tungsten is essential for some archaea. The following tungsten-utilizing enzymes are known:



  • Aldehyde ferredoxin oxidoreductase (AOR) in Thermococcus strain ES-1

  • Formaldehyde ferredoxin oxidoreductase (FOR) in Thermococcus litoralis


  • Glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR) in Pyrococcus furiosus

A wtp system is known to selectively transport tungsten in archaea:


  • WtpA is tungsten-binding protein of ABC family of transporters

  • WptB is a permease

  • WtpC is ATPase[95]


Health factors


Because tungsten is rare[clarification needed] and its compounds are generally inert, the effects of tungsten on the environment are limited.[96]
It was at first believed to be relatively inert and an only slightly toxic metal, but beginning in the year 2000, the risk presented by tungsten alloys, its dusts and particulates to induce cancer and several other adverse effects in animals as well as humans has been highlighted from in vitro and in vivo experiments.[97][98]
The median lethal dose LD50 depends strongly on the animal and the method of administration and varies between 59 mg/kg (intravenous, rabbits)[99][100] and 5000 mg/kg (tungsten metal powder, intraperitoneal, rats).[101][102]


People can be exposed to tungsten in the workplace by breathing it in, swallowing it, skin contact, and eye contact. The National Institute for Occupational Safety and Health (NIOSH) has set a recommended exposure limit (REL) of 5 mg/m3 over an 8-hour workday and a short term limit of 10 mg/m3.[103]



Patent claim


Tungsten is unique amongst the elements in that it has been the subject of patent proceedings. In 1928, a US court rejected General Electric's attempt to patent it, overturning U.S. Patent 1,082,933 granted in 1913 to William D. Coolidge.[104][105][106]



See also


  • Field emission gun

  • Tungsten oxide

  • List of chemical elements name etymologies

  • List of chemical elements naming controversies


References




  1. ^ Meija, J.; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry. 88 (3): 265–91. doi:10.1515/pac-2015-0305..mw-parser-output cite.citationfont-style:inherit.mw-parser-output qquotes:"""""""'""'".mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em


  2. ^ Berger, Dan. "Why does Tungsten not 'Kick' up an electron from the s sublevel ?". Bluffton College, USA.


  3. ^ Lide, David R., ed. (2009). CRC Handbook of Chemistry and Physics (90th ed.). Boca Raton, Florida: CRC Press. p. 6-134. ISBN 978-1-4200-9084-0.


  4. ^ Tolias P. (2017). "Analytical expressions for thermophysical properties of solid and liquid tungsten relevant for fusion applications". Nuclear Materials and Energy. 13: 42. arXiv:1703.06302. doi:10.1016/j.nme.2017.08.002.


  5. ^ Lide, D. R., ed. (2005). "Magnetic susceptibility of the elements and inorganic compounds". CRC Handbook of Chemistry and Physics (PDF) (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.


  6. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. p. E110. ISBN 0-8493-0464-4.


  7. ^ wolfram on Merriam-Webster.


  8. ^ wolfram on Oxford Dictionaries.


  9. ^ "Tungsten". Oxford English Dictionary (3rd ed.). Oxford University Press. September 2005. (Subscription or UK public library membership required.)


  10. ^ Zhang Y; Evans JRG and Zhang S (2011). "Corrected Values for Boiling Points and Enthalpies of Vaporization of Elements in Handbooks". J. Chem. Eng. Data. 56 (2): 328–337. doi:10.1021/je1011086.


  11. ^ abcd Daintith, John (2005). Facts on File Dictionary of Chemistry (4th ed.). New York: Checkmark Books. ISBN 978-0-8160-5649-1.


  12. ^ Lassner, Erik; Schubert, Wolf-Dieter (1999). "low temperature brittleness". Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. Springer. pp. 20–21. ISBN 978-0-306-45053-2.


  13. ^ Gludovatz, B.; Wurster, S.; Weingärtner, T.; Hoffmann, A.; Pippan, R. (2011). "Influence of impurities on the fracture behavior of tungsten". Philosophical Magazine (Submitted manuscript). 91 (22): 3006–3020. Bibcode:2011PMag...91.3006G. doi:10.1080/14786435.2011.558861.


  14. ^ abcde Stwertka, Albert (2002). A Guide to the elements (2nd ed.). New York: Oxford University Press. ISBN 978-0-19-515026-1.


  15. ^ Koribanics, N. M.; Tuorto, S. J.; Lopez-Chiaffarelli, N.; McGuinness, L. R.; Häggblom, M. M.; Williams, K. H.; Long, P. E.; Kerkhof, L. J. (2015). "Spatial Distribution of an Uranium-Respiring Betaproteobacterium at the Rifle, CO Field Research Site". PLoS ONE. 10 (4): e0123378. doi:10.1371/journal.pone.0123378. PMC 4395306. PMID 25874721.


  16. ^ McMaster, J. & Enemark, John H. (1998). "The active sites of molybdenum- and tungsten-containing enzymes". Current Opinion in Chemical Biology. 2 (2): 201–207. doi:10.1016/S1367-5931(98)80061-6. PMID 9667924.


  17. ^ Hille, Russ (2002). "Molybdenum and tungsten in biology". Trends in Biochemical Sciences. 27 (7): 360–367. doi:10.1016/S0968-0004(02)02107-2. PMID 12114025.


  18. ^ abc Hammond, C. R. (2004). The Elements, in Handbook of Chemistry and Physics (81st ed.). CRC press. ISBN 978-0-8493-0485-9.


  19. ^ Lassner, Erik; Schubert, Wolf-Dieter (1999). Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. Springer. p. 9. ISBN 978-0-306-45053-2.


  20. ^ Heather Bean Material Properties and Analysis Techniques for Tungsten Thin Films Archived 2011-10-23 at the Wayback Machine.. October 19, 1998


  21. ^ Lita, A. E.; Rosenberg, D.; Nam, S.; Miller, A.; Balzar, D.; Kaatz, L. M.; Schwall, R. E. (2005). "Tuning of Tungsten Thin Film Superconducting Transition Temperature for Fabrication of Photon Number Resolving Detectors" (PDF). IEEE Transactions on Applied Superconductivity. 15 (2): 3528–3531. Bibcode:2005ITAS...15.3528L. doi:10.1109/TASC.2005.849033. Archived (PDF) from the original on 2013-05-13.


  22. ^ Johnson, R. T.; O. E. Vilches; J. C. Wheatley; Suso Gygax (1966). "Superconductivity of Tungsten". Physical Review Letters. 16 (3): 101–104. Bibcode:1966PhRvL..16..101J. doi:10.1103/PhysRevLett.16.101.


  23. ^ Autler, S. H.; J. K. Hulm; R. S. Kemper (1965). "Superconducting Technetium-Tungsten Alloys". Physical Review. 140 (4A): A1177–A1180. Bibcode:1965PhRv..140.1177A. doi:10.1103/PhysRev.140.A1177.


  24. ^ Shailos, A.; W Nativel; A Kasumov; C Collet; M Ferrier; S Guéron; R Deblock; H Bouchiat (2007). "Proximity effect and multiple Andreev reflections in few-layer graphene". Europhysics Letters (EPL). 79 (5): 57008. arXiv:cond-mat/0612058. Bibcode:2007EL.....7957008S. doi:10.1209/0295-5075/79/57008.


  25. ^ Kasumov, A. Yu.; K. Tsukagoshi; M. Kawamura; T. Kobayashi; Y. Aoyagi; K. Senba; T. Kodama; H. Nishikawa; I. Ikemoto; K. Kikuchi; V. T. Volkov; Yu. A. Kasumov; R. Deblock; S. Guéron; H. Bouchiat (2005). "Proximity effect in a superconductor-metallofullerene-superconductor molecular junction". Physical Review B. 72 (3): 033414. arXiv:cond-mat/0402312. Bibcode:2005PhRvB..72c3414K. doi:10.1103/PhysRevB.72.033414.


  26. ^ Kirk, M. D.; D. P. E. Smith; D. B. Mitzi; J. Z. Sun; D. J. Webb; K. Char; M. R. Hahn; M. Naito; B. Oh; M. R. Beasley; T. H. Geballe; R. H. Hammond; A. Kapitulnik; C. F. Quate (1987). "Point-contact electron tunneling into the high-T_c superconductor Y-Ba-Cu-O". Physical Review B. 35 (16): 8850–8852. Bibcode:1987PhRvB..35.8850K. doi:10.1103/PhysRevB.35.8850.


  27. ^ Danevich, F. A.; et al. (2003). "α activity of natural tungsten isotopes". Phys. Rev. C. 67 (1): 014310. arXiv:nucl-ex/0211013. Bibcode:2003PhRvC..67a4310D. doi:10.1103/PhysRevC.67.014310.


  28. ^ Cozzini, C.; et al. (2004). "Detection of the natural α decay of tungsten". Phys. Rev. C. 70 (6): 064606. arXiv:nucl-ex/0408006. Bibcode:2004PhRvC..70f4606C. doi:10.1103/PhysRevC.70.064606.


  29. ^ abc Sonzogni, Alejandro. "Interactive Chart of Nuclides". National Nuclear Data Center: Brookhaven National Laboratory. Archived from the original on 2008-05-22. Retrieved 2008-06-06.


  30. ^ ab Emsley, John E. (1991). The elements (2nd ed.). New York: Oxford University Press. ISBN 978-0-19-855569-8.


  31. ^ Morse, P. M.; Shelby, Q. D.; Kim, D. Y.; Girolami, G. S. (2008). "Ethylene Complexes of the Early Transition Metals: Crystal Structures of [HfEt4(C2H4)2−] and the Negative-Oxidation-State Species [TaHEt(C2H4)33−] and [WH(C2H4)43−]". Organometallics. 27 (5): 984–993. doi:10.1021/om701189e.


  32. ^ Smith, Bradley J.; Patrick, Vincent A. (2000). "Quantitative Determination of Sodium Metatungstate Speciation by 183W N.M.R. Spectroscopy". Australian Journal of Chemistry. 53 (12): 965. doi:10.1071/CH00140. Archived from the original on 2008-04-03. Retrieved 2008-06-17.


  33. ^ See:
    • Scheele, Carl Wilhelm (1781) "Tungstens bestånds-delar" (Tungsten's constituents), Kungliga Vetenskaps Academiens Nya Handlingar (Royal Scientific Academy's New Proceedings), 2 : 89–95. (in Swedish)

    • English translation on pp. 4–13 of: de Luyart, John Joseph and Fausto, with Charles Cullen, trans., A Chemical Analysis of Wolfram and Examination of a New Metal, Which Enters its Composition (London, England, G. Nicol, 1785).




  34. ^ ab Saunders, Nigel (2004). Tungsten and the Elements of Groups 3 to 7 (The Periodic Table). Chicago, Illinois: Heinemann Library. ISBN 978-1-4034-3518-7.


  35. ^ "ITIA Newsletter" (PDF). International Tungsten Industry Association. June 2005. Archived from the original on July 21, 2011. Retrieved 2008-06-18.CS1 maint: Unfit url (link)


  36. ^ "ITIA Newsletter" (PDF). International Tungsten Industry Association. December 2005. Archived from the original on July 21, 2011. Retrieved 2008-06-18.CS1 maint: Unfit url (link)


  37. ^ See:
    • de Luyart, J.J. and F. (September 1783) "Análisis químico del volfram, y examen de un nuevo metal, que entra en su composición" (Chemical analysis of wolframite, and examination of a new metal, which enters into its composition), Extractos de las Juntas Generales celebradas por la Real Sociedad Bascongada de los Amigos del País en la ciudad de Vitoria por setiembre de 1783, pp. 46–88.

    • de Luyart, John Joseph and Fausto, with Charles Cullen, trans., A Chemical Analysis of Wolfram and Examination of a New Metal, Which Enters its Composition (London, England, G. Nicol, 1785).

    • Caswell, Lyman R. and Stone Daley, Rebecca W. (1999) "The Delhuyar brothers, tungsten, and Spanish silver," Bulletin for the History of Chemistry, 23 : 11–19. Available at: University of Illinois (USA) Archived 2015-12-30 at the Wayback Machine.




  38. ^ Watson, Greig (2014-06-06). "Vital WW1 metal 'in enemy hands'". BBC News. Retrieved 2018-02-10.


  39. ^ Stevens, Donald G. (1999). "World War II Economic Warfare: The United States, Britain, and Portuguese Wolfram". The Historian. 61 (3): 539. Archived from the original on 2011-06-28.


  40. ^ Wheeler, L. Douglas (Summer 1986). "The Price of Neutrality: Portugal, the Wolfram Question, and World War II". Luso-Brazilian Review. 23 (1): 107–127. JSTOR 3513391.


  41. ^ van der Krogt, Peter. "Wolframium Wolfram Tungsten". Elementymology & Elements Multidict. Archived from the original on 2010-01-23. Retrieved 2010-03-11.


  42. ^ ab Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). "Mangan". Lehrbuch der Anorganischen Chemie (in German) (91–100 ed.). Walter de Gruyter. pp. 1110–1117. ISBN 978-3-11-007511-3.


  43. ^ Pope, Michael T.; Müller, Achim (1997). "Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines". Angewandte Chemie International Edition. 30: 34–48. doi:10.1002/anie.199100341.


  44. ^ ab Shedd, Kim B. (2009). "Tungsten (table 15)" (PDF). United States Geological Survey. Archived (PDF) from the original on 2011-10-28. Retrieved 2011-06-18.


  45. ^ ab "Tungsten: World Concentrate Production, By Country". IndexMundi. 2014-09-03. Archived from the original on 2015-09-24. Retrieved 2015-08-30.


  46. ^ ab
    Mineral Commodity Summaries, January 2011 pp. 176–177 Archived 2011-10-28 at the Wayback Machine. U.S. Geological Survey.



  47. ^ "The Trouble With Tungsten". resourceinvestor.com. February 1, 2006. Archived from the original on December 4, 2016.


  48. ^ Kristof, Nicholas D. (2010-06-27). "Death by Gadget". The New York Times. Archived from the original on 2016-08-31.


  49. ^ The Genocide Behind Your Smart Phone Archived 2011-11-17 at the Wayback Machine.. The Daily Beast. July 16, 2010


  50. ^ "Work starts on £130m Devon tungsten mine" Archived 2014-12-05 at the Wayback Machine.. BBC News, 9 June 2014


  51. ^ ab Schey, John A. (1987). Introduction to Manufacturing Processes (2nd ed.). McGraw-Hill, Inc.


  52. ^ Erik Lassner, Wolf-Dieter Schubert, Eberhard Lüderitz, Hans Uwe Wolf, "Tungsten, Tungsten Alloys, and Tungsten Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim. doi:10.1002/14356007.a27_229.


  53. ^ Don Law-West; Louis Perron. "Tungsten". The Canadian Encyclopaedia. Retrieved 2009-05-05.


  54. ^ Tungsten: The Element, History, Uses and Wedding Bands Archived 2013-09-21 at the Wayback Machine.. (2012)


  55. ^ de Laubenfels, Blair; Weber, Christy; Bamberg, Kim (2009). Knack Planning Your Wedding: A Step-by-Step Guide to Creating Your Perfect Day. Globe Pequot. pp. 35–. ISBN 978-1-59921-397-2. Archived from the original on 2014-09-29.


  56. ^ Schultz, Ken (2009). Ken Schultz's Essentials of Fishing: The Only Guide You Need to Catch Freshwater and Saltwater Fish. John Wiley and Sons. pp. 138–. ISBN 978-0-470-44431-3. Archived from the original on 2014-09-30.


  57. ^ "Tungsten Applications – Steel". Azom. 2000–2008. Archived from the original on 2008-08-15. Retrieved 2008-06-18.


  58. ^ Ramakrishnan, P. (2007). "Powder metallurgy for Aerospace Applications". Powder metallurgy: processing for automotive, electrical/electronic and engineering industry. New Age International. p. 38. ISBN 978-81-224-2030-2.


  59. ^ Tungsten Applications Archived 2013-09-01 at the Wayback Machine.. wolfmet.com


  60. ^ MALLORY Alloys Group Archived 2011-09-03 at the Wayback Machine.


  61. ^ Dense Inert Metal Explosive (DIME) Archived 2008-08-28 at the Wayback Machine.. Defense-update.com. Retrieved on 2011-08-07.


  62. ^ Delmon, Bernard & Froment, Gilbert F. (1999). Hydrotreatment and hydrocracking of oil fractions: proceedings of the 2nd international symposium, 7th European workshop, Antwerpen, Belgium, November 14–17, 1999. Elsevier. pp. 351–. ISBN 978-0-444-50214-8. Archived from the original on 30 May 2013. Retrieved 18 December 2011.


  63. ^ Mang, Theo & Dresel, Wilfried (28 May 2007). Lubricants and Lubrication. John Wiley & Sons. pp. 695–. ISBN 978-3-527-61033-4. Archived from the original on 30 May 2013. Retrieved 18 December 2011.


  64. ^ Spivey, James J. (2002). Catalysis. Royal Society of Chemistry. pp. 239–. ISBN 978-0-85404-224-1. Archived from the original on 30 May 2013. Retrieved 18 December 2011.


  65. ^ Turrell, Kerry (2004). Tungsten. Marshall Cavendish. p. 24. ISBN 978-0-7614-1548-0.


  66. ^ Duchaine, Simon (2018-03-09). "The Tungsten Carbide Nozzle Offers a Balance Between Wear Resistance and High Performance". 3dprint.com. Retrieved 2018-10-23.


  67. ^ "Why Spirocore Tungsten C String". cello-strings.com. Archived from the original on 2016-05-10.


  68. ^ "CRS Instruments". NASA. Archived from the original on 2017-02-01.


  69. ^ Hesse, Rayner W. (2007). "tungsten". Jewelrymaking through history: an encyclopedia. Westport, Conn.: Greenwood Press. pp. 190–192. ISBN 978-0-313-33507-5.


  70. ^ ab Gray, Theo (March 14, 2008). "How to Make Convincing Fake-Gold Bars". Popular Science. Archived from the original on January 25, 2015. Retrieved 2008-06-18.


  71. ^ "Zinc Dimes, Tungsten Gold & Lost Respect Archived 2011-10-08 at the Wayback Machine.", Jim Willie, Nov 18 2009


  72. ^ Largest Private Refinery Discovers Gold-Plated Tungsten Bar Archived 2012-03-23 at the Wayback Machine., March 2, 2010, Patrick A. Heller, reporting story by ProSieben


  73. ^ Reuters (1983-12-22). "Austrians Seize False Gold Tied to London Bullion Theft". The New York Times. Archived from the original on 2012-03-27. Retrieved 2012-03-25.


  74. ^ Tungsten filled Gold bars Archived 2012-03-26 at the Wayback Machine., ABC Bullion, Thursday, March 22, 2012


  75. ^ Tungsten Alloy for Gold Substitution Archived 2012-03-22 at the Wayback Machine., China Tungsten


  76. ^ DeGarmo, E. Paul (1979). Materials and Processes in Manufacturing (5th ed.). New York: MacMillan Publishing.


  77. ^ Curry, Thomas S.; Dowdey, James E.; Murry, Robert C.; Christensen, Edward E. (1990-08-01). Christensen's physics of diagnostic radiology. pp. 29–35. ISBN 978-0-8121-1310-5. Archived from the original on 2017-11-11.


  78. ^ Hasz, Wayne Charles et al. (August 6, 2002) "X-ray target" U.S. Patent 6,428,904


  79. ^ "Non-Sag Doped Tungsten - Union City Filament". Union City Filament. Retrieved 2017-04-28.


  80. ^ Li Yadong. "From Surfactant–Inorganic Mesostructures to Tungsten Nanowires".


  81. ^ Volker Cimalla (2008). "Nanomechanics of single crystalline tungsten nanowires". Journal of Nanomaterials. 2008: 1–9. doi:10.1155/2008/638947.


  82. ^ CNR Rao (2006). "High-sensitivity hydrocarbon sensors based on tungsten oxide nanowires". Journal of Materials Chemistry.


  83. ^ Liu, M.; Peng, J.; et al. (2016). "Two-dimensional modeling of the self-limiting oxidation in silicon and tungsten nanowires". Theoretical and Applied Mechanics Letters. 6 (5): 195–199. doi:10.1016/j.taml.2016.08.002.


  84. ^ JTL Thong (2010). "Thermal oxidation of polycrystalline tungsten nanowire" (PDF). Journal of Applied Physics. 108 (9): 094312–094312–6. Bibcode:2010JAP...108i4312Y. doi:10.1063/1.3504248. Archived (PDF) from the original on 2017-03-15.


  85. ^ Johnson JL1, Rajagopalan KV, Mukund S, Adams MW. (5 March 1993). "Identification of molybdopterin as the organic component of the tungsten cofactor in four enzymes from hyperthermophilic Archaea". Journal of Biological Chemistry. 268 (7): 4848–52. PMID 8444863.CS1 maint: Multiple names: authors list (link)


  86. ^ Lassner, Erik (1999). Tungsten: Properties, Chemistry, Technology of the Element, Alloys and Chemical Compounds. Springer. pp. 409–411. ISBN 978-0-306-45053-2.


  87. ^ Stiefel, E. I. (1998). "Transition metal sulfur chemistry and its relevance to molybdenum and tungsten enzymes" (PDF). Pure Appl. Chem. 70 (4): 889–896. CiteSeerX 10.1.1.614.5712. doi:10.1351/pac199870040889. Archived (PDF) from the original on 2008-12-03.


  88. ^ Khangulov, S. V.; et al. (1998). "Selenium-Containing Formate Dehydrogenase H from Escherichia coli: A Molybdopterin Enzyme That Catalyzes Formate Oxidation without Oxygen Transfer". Biochemistry. 37 (10): 3518–3528. doi:10.1021/bi972177k. PMID 9521673.


  89. ^ ten Brink, Felix (2014). "Chapter 2. Living on acetylene. A Primordial Energy Source". In Peter M.H. Kroneck; Martha E. Sosa Torres. The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Metal Ions in Life Sciences. 14. Springer. pp. 15–35. doi:10.1007/978-94-017-9269-1_2. ISBN 978-94-017-9268-4. PMID 25416389.


  90. ^ Schrader, Thomas; Rienhofer, Annette; Andreesen, Jan R. (1999). "Selenium-containing xanthine dehydrogenase from Eubacterium barkeri". Eur. J. Biochem. 264 (3): 862–71. doi:10.1046/j.1432-1327.1999.00678.x. PMID 10491134.


  91. ^ Andreesen, J. R.; Makdessi, K. (2008). "Tungsten, the Surprisingly Positively Acting Heavy Metal Element for Prokaryotes". Annals of the New York Academy of Sciences. 1125 (1): 215–229. Bibcode:2008NYASA1125..215A. doi:10.1196/annals.1419.003. PMID 18096847.


  92. ^ Petkewich, Rachel A. (19 January 2009). "Unease over Tungsten". Chemical & Engineering News. 87 (3): 63–65. doi:10.1021/cen-v087n003.p063. ISSN 0009-2347.


  93. ^ Inouye, L. S.; et al. (2006). "Tungsten effects on survival, growth, and reproduction in the earthworm, eisenia fetida". Environmental Toxicology & Chemistry. 25 (3): 763. doi:10.1897/04-578R.1.


  94. ^ McQuaid A; Lamand M; Mason J (1994). "Thiotungstate-copper interactions II. The effects of tetrathiotungstate on systemic copper metabolism in normal and copper-treated rats". J Inorg Biochem. 53 (3): 205. doi:10.1016/0162-0134(94)80005-7.


  95. ^
    Paul Blum, ed. (1 April 2008). Archaea: New Models for Prokaryotic Biology. Caister Academic Press. ISBN 978-1904455271.



  96. ^ Strigul, N; Koutsospyros, A; Arienti, P; Christodoulatos, C; Dermatas, D; Braida, W (2005). "Effects of tungsten on environmental systems". Chemosphere. 61 (2): 248–58. Bibcode:2005Chmsp..61..248S. doi:10.1016/j.chemosphere.2005.01.083. PMID 16168748.


  97. ^ Laulicht, F.; Brocato, J.; Cartularo, L.; Vaughan, J.; Wu, F.; Vaughan, J.; Kluz, T.; Sun, H.; Oksuz, B. A.; Shen, S.; Peana, M.; Medici, S.; Zoroddu, M. A.; Costa, M. (2015). "Tungsten-induced carcinogenesis in human bronchial epithelial cells". Toxicology and Applied Pharmacology. 288 (1): 33–39. doi:10.1016/j.taap.2015.07.003. PMC 4579035. PMID 26164860.


  98. ^ Zoroddu, M. A.; Medici, S.; Peana, M.; Nurchi, V. M.; Lachowicz, J. I.; Laulicht, J.; Costa, M. (2017). "Tungsten or Wolfram: Friend or Foe?". Curr. Med. Chem. 24 (1): 65–90. doi:10.2174/0929867324666170428105603. PMID 27855621.


  99. ^ Koutsospyros, A.; Braida, W.; Christodoulatos, C.; Dermatas, D.; Strigul, N. (2006). "A review of tungsten: From environmental obscurity to scrutiny". Journal of Hazardous Materials. 136 (1): 1–19. doi:10.1016/j.jhazmat.2005.11.007. PMID 16343746.


  100. ^ Lagarde, F.; Leroy, M. (2002). Metabolism and toxicity of tungsten in humans and animals. Metal Ions in Biological Systems. 39. pp. 741–59. doi:10.1201/9780203909331.ch22. ISBN 978-0-8247-0765-1. PMID 11913143. also reported in Astrid Sigel; Helmut Sigel (2002). Molybdenum and tungsten: their roles in biological processes. CRC Press. p. 741 ff. ISBN 978-0-8247-0765-1.


  101. ^ Masten, Scott (2003). "Tungsten and Selected Tungsten Compounds – Review of Toxicological Literature" (PDF). National Institute of Environmental Health Sciences. Archived from the original (PDF) on 2009-03-25. Retrieved 2009-03-19.


  102. ^ Marquet, P.; et al. (1997). "Tungsten determination in biological fluids, hair and nails by plasma emission spectrometry in a case of severe acute intoxication in man". Journal of Forensic Sciences. 42 (3): 527–30. PMID 9144946.


  103. ^ "CDC – NIOSH Pocket Guide to Chemical Hazards – Tungsten". www.cdc.gov. Archived from the original on 2015-11-25. Retrieved 2015-11-24.


  104. ^ General Electric Co. v. De Forest Radio Co., 28 F.2d 641, 643 (3rd Cir. 1928)


  105. ^ Guruswamy, Lakshman D.; McNeely, Jeffrey A. (1998). Protection of global biodiversity: converging strategies. Duke University Press. pp. 333–. ISBN 978-0-8223-2188-0. Archived from the original on 2013-05-30.


  106. ^ General Electric Co. v. De Forest Radio Co., 28 F.2d 641 (3d Cir. 1928).



External links






  • Properties, Photos, History, MSDS

  • CDC – NIOSH Pocket Guide to Chemical Hazards


  • Tungsten at The Periodic Table of Videos (University of Nottingham)

  • Picture in the collection from Heinrich Pniok

  • Elementymology & Elements Multidict by Peter van der Krogt – Tungsten

  • International Tungsten Industry Association













Popular posts from this blog

How to check contact read email or not when send email to Individual?

Bahrain

Postfix configuration issue with fips on centos 7; mailgun relay