How to evaluate $int_-infty^inftydx fracx^2 e^x(e^x+1)^2$
Clash Royale CLAN TAG#URR8PPP
up vote
5
down vote
favorite
My physics textbook makes use of the result:
$$int_-infty^inftydx dfracx^2 e^x(e^x+1)^2 = dfracpi^23$$
I'm really curious on how I can derive this but I honestly don't know what to search for. My instinct is to transform to polar coordinates but I would like some guidance. Any help appreciated!
integration definite-integrals
add a comment |
up vote
5
down vote
favorite
My physics textbook makes use of the result:
$$int_-infty^inftydx dfracx^2 e^x(e^x+1)^2 = dfracpi^23$$
I'm really curious on how I can derive this but I honestly don't know what to search for. My instinct is to transform to polar coordinates but I would like some guidance. Any help appreciated!
integration definite-integrals
add a comment |
up vote
5
down vote
favorite
up vote
5
down vote
favorite
My physics textbook makes use of the result:
$$int_-infty^inftydx dfracx^2 e^x(e^x+1)^2 = dfracpi^23$$
I'm really curious on how I can derive this but I honestly don't know what to search for. My instinct is to transform to polar coordinates but I would like some guidance. Any help appreciated!
integration definite-integrals
My physics textbook makes use of the result:
$$int_-infty^inftydx dfracx^2 e^x(e^x+1)^2 = dfracpi^23$$
I'm really curious on how I can derive this but I honestly don't know what to search for. My instinct is to transform to polar coordinates but I would like some guidance. Any help appreciated!
integration definite-integrals
integration definite-integrals
edited 18 hours ago
Asaf Karagila♦
299k32419748
299k32419748
asked 23 hours ago
Ayumu Kasugano
1916
1916
add a comment |
add a comment |
8 Answers
8
active
oldest
votes
up vote
6
down vote
First off, notice the integrand is even, so we have $$ int_-infty^infty fracx^2 e^x(e^x+1)^2dx = 2int_0^infty fracx^2 e^x(e^x+1)^2dx.$$ Then we can expand $$ frac1(1+x)^2 = sum_n=0^infty (-1)^n(n+1) x^n $$ and write $$ 2int_0^infty fracx^2 e^x(e^x+1)^2dx=\ =2int_0^infty fracx^2 e^-x(e^-x+1)^2dx \ = 2 int_0^infty x^2e^-xsum_n=0^infty (-1)^n (n+1) e^-nx\=2sum_n=0^infty (-1)^n(n+1) int_0^infty x^2 e^-(n+1)xdx\=4sum_n=0^infty frac(-1)^n(n+1)^2.$$ Then we have $$ sum_n=0^infty frac(-1)^n(n+1)^2 = 1-frac12^2 + frac13^2ldots = (1-frac22^2)(1+frac12^2 + frac13^2ldots) = fracpi^212$$
Edit
Realized this can be simplified somewhat by first doing an integration by parts $$ 2int_0^infty fracx^2 e^x(e^x+1)^2dx = 4int_0^infty fracxe^x+1dx$$ followed by a similar series expansion. Additionally, this solution somewhat 'misses the point' relative to contour integration approaches since that's one of the slicker ways to get $sum_n1/n^2=pi^2/6$ in the first place (and also transformation from the sums to integrals like this are the source of many zeta function identities).
add a comment |
up vote
4
down vote
You have
$$
int_-infty^inftyfracx^2 e^x(e^x+1)^2,mathrmdx=
int_-infty^inftyfracx^22(cosh x+1),mathrmdx
$$
So integrate $dfracz^31+cosh z$ around rectangle $pm Rpm2pi i$, we have encircled a simple pole at $pi i$ with residue $6pi^2$. The vertical sides contribution is $to 0$ as $Rtoinfty$ because of cosh in the denominator, and the horizontal contribution
$$
int_-infty^inftyfracx^31+cosh x,mathrmdx+int_infty^-inftyfrac(x+2pi i)^31+underbracecosh(x+2pi i)_=cosh x,mathrmdx
$$
whose imaginary part is
$$
2piint_infty^-inftyfrac3x^2-4pi^21+cosh(x),mathrmdx.
$$
So
$$
3int_infty^-inftyfracx^21+cosh(x),mathrmdx
-4pi^2int_infty^-inftyfrac11+cosh(x),mathrmdx
=6pi^2
$$
i.e.,
beginalign
int_-infty^inftyfracx^22(1+cosh(x)),mathrmdx
&=-pi^2
+frac43pi^2int_-infty^inftyfrac12(1+cosh(x)),mathrmdx
\
&=-pi^2+frac43pi^2=frac13pi^2
endalign
since
$$
int_-infty^inftyfrac12(cosh x+1),mathrmdx=int_-infty^inftyfrac14operatornamesech^2frac x2,mathrmdx=left[frac12tanhfrac x2right]_-infty^infty=1.
$$
add a comment |
up vote
4
down vote
Substitute $e^x=t$ we get $$I=int_0^infty frac ln^2t dt(1+t)^2$$
Let $$J(a)=int_0^infty frac t^a-1dt(1+t)^2$$
So we need to find $J''(1)$
Notice that $$J(a)=B(a,2-a)=frac Gamma(a)Gamma(2-a)Gamma(2)$$
Where $B(x,y)$ is Standard beta function and $Gamma(x)$ is the Gamma function
Using the properties of Gamma function and Euler's reflection formula we have $$J(a)=Gamma(a) cdot(1-a)Gamma(1-a)=pi frac 1-asin pi a$$
Differentiating twice w.r.t $a$ and taking limit $ato 1$ gives the desired result
add a comment |
up vote
1
down vote
Here we use Feynman's Trick to facilitate analysis. Proceeding, we have
$$beginalign
I&=int_-infty^infty fracx^2e^x(e^x+1)^2,dx\\
&=2int_0^infty fracx^2e^x(e^x+1)^2,dx\\
&=-2left.left(fracddyint_0^infty fracx^2ye^x+1,dxright)right|_y=1\\
&=-2left.left(fracddyint_0^infty fracx^2e^-xe^-x+y,dxright)right|_y=1\\
&=-2left.fracddyleft(frac1yint_0^infty fracx^2e^-xe^-x/y+1,dxright)right|_y=1\\
&=-2left.fracddyleft(sum_n=0^infty frac(-1)^ny^n+1int_0^infty x^2e^-(n+1)x,dxright)right|_y=1\\
&=-4left.fracddyleft(sum_n=0^infty frac(-1)^ny^n+1(n+1)^3right)right|_y=1\\
&=4sum_n=1^infty frac(-1)^n+1n^2\\
&=4fracpi^212\\
&=fracpi^23
endalign$$
add a comment |
up vote
0
down vote
my first thought was trying substitution:
$$I=int_-infty^inftyfracx^2e^x(e^x+1)^2dx$$
$u=e^x+1,,dx=fracdue^x$
$$I=int_1^inftyfracx^2u^2du=int_1^inftyfracln^2(u-1)u^2du$$
if we now let:
$$I(a)=int_1^inftyfracln(au-1)u^2du$$
then:
$$I''(a)=int_1^inftyln(au-1)du$$
$v=au-1,,du=fracdva$
$$I''(a)=frac1aint_a^inftyln(v)dv$$
although this leaves us with a divergent integral, which does not help.
Another approach:
$$I=int_-infty^inftyfracx^2e^x(e^x+1)^2dx=int_-infty^inftyfracx^2[(e^x+1)-1](e^x+1)^2dx=int_-infty^inftyfracx^2e^x+1dx-int_-infty^inftyfracx^2(e^x+1)^2dx$$
add a comment |
up vote
0
down vote
The integral you are interested in can be rewritten in the form: $$int_-infty^inftyfracx^22 cosh(x)+2 dx$$
Several techniques for solving integrals similar to this can be found at:
Improper Integral of $x^2/cosh(x)$
New contributor
add a comment |
up vote
0
down vote
One of the standard solutions for evaluating difficult integrals is to transform the integrand into an infinite sequence and then integrating termwise. Indeed, if we start off with the geometric sum$$sumlimits_ngeq0x^n=frac 11-x$$multiply both sides by $x$ and differentiating with respect to $x$, it's easy to see that$$sumlimits_ngeq0(n+1)x^n=frac 1(1-x)^2$$Replace $x$ with $-e^-x$ in the problem and calling the integral $mathfrakI$, the problem transforms into$$beginalign*mathfrakI & =2sumlimits_ngeq0(-1)^n(n+1)intlimits_0^inftymathrm dx,x^2 e^-(n+1)xendalign*$$The remaining integral can be evaluated using integration by parts on $u=x^2$ to get$$mathfrak I=4sumlimits_ngeq0frac (-1)^n(n+1)^2=4sumlimits_ngeq1frac (-1)^n-1n^2$$The inner sum is equal to $pi^2/12$ and is due to the identity$$eta(s)=(1-2^1-s)zeta(s)$$Where$$eta(s)=sumlimits_ngeq1frac (-1)^n-1n^s$$$$zeta(s)=sumlimits_ngeq1frac 1n^s$$Since $zeta(2)=pi^2/6$, the result follows immediately$$intlimits_-infty^inftymathrm dx,frac x^2e^x(1+e^x)^2colorblue=frac pi^23$$
add a comment |
up vote
0
down vote
We could even compute the antiderivative since
$$I=intfracx^2 e^x(e^x+1)^2,dx=x left(frace^x xe^x+1-2 log left(e^x+1right)right)-2 textLi_2left(-e^xright)$$ making
$$J=int_0^pfracx^2 e^x(e^x+1)^2,dx=frace^p p^2e^p+1-2 textLi_2left(-e^pright)-2 p log
left(e^p+1right)-fracpi ^26$$ Expanding as series for large values of $p$
$$J=left(2-frac1e^p+1right) p^2+frac12 e^-2 p left(1-4
e^pright)+fracpi ^26-2 p log left(e^p+1right)+cdots$$ which shows the limit and which is a quite good approximation even for small values of $p$
$$left(
beginarrayccc
p & textapproximation & textexact \
1 & 0.08137802971721 & 0.07217327763488 \
2 & 0.39889758755901 & 0.39838536515902 \
3 & 0.82824233816028 & 0.82821565813003 \
4 & 1.17549173764877 & 1.17549038617232 \
5 & 1.39700611481663 & 1.39700604709488 \
6 & 1.52125697930945 & 1.52125697592972 \
7 & 1.58570867980301 & 1.58570867963459 \
8 & 1.61743428754382 & 1.61743428753543 \
9 & 1.63247105478514 & 1.63247105478472 \
10 & 1.63939550316470 & 1.63939550316468
endarray
right)$$
add a comment |
8 Answers
8
active
oldest
votes
8 Answers
8
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
6
down vote
First off, notice the integrand is even, so we have $$ int_-infty^infty fracx^2 e^x(e^x+1)^2dx = 2int_0^infty fracx^2 e^x(e^x+1)^2dx.$$ Then we can expand $$ frac1(1+x)^2 = sum_n=0^infty (-1)^n(n+1) x^n $$ and write $$ 2int_0^infty fracx^2 e^x(e^x+1)^2dx=\ =2int_0^infty fracx^2 e^-x(e^-x+1)^2dx \ = 2 int_0^infty x^2e^-xsum_n=0^infty (-1)^n (n+1) e^-nx\=2sum_n=0^infty (-1)^n(n+1) int_0^infty x^2 e^-(n+1)xdx\=4sum_n=0^infty frac(-1)^n(n+1)^2.$$ Then we have $$ sum_n=0^infty frac(-1)^n(n+1)^2 = 1-frac12^2 + frac13^2ldots = (1-frac22^2)(1+frac12^2 + frac13^2ldots) = fracpi^212$$
Edit
Realized this can be simplified somewhat by first doing an integration by parts $$ 2int_0^infty fracx^2 e^x(e^x+1)^2dx = 4int_0^infty fracxe^x+1dx$$ followed by a similar series expansion. Additionally, this solution somewhat 'misses the point' relative to contour integration approaches since that's one of the slicker ways to get $sum_n1/n^2=pi^2/6$ in the first place (and also transformation from the sums to integrals like this are the source of many zeta function identities).
add a comment |
up vote
6
down vote
First off, notice the integrand is even, so we have $$ int_-infty^infty fracx^2 e^x(e^x+1)^2dx = 2int_0^infty fracx^2 e^x(e^x+1)^2dx.$$ Then we can expand $$ frac1(1+x)^2 = sum_n=0^infty (-1)^n(n+1) x^n $$ and write $$ 2int_0^infty fracx^2 e^x(e^x+1)^2dx=\ =2int_0^infty fracx^2 e^-x(e^-x+1)^2dx \ = 2 int_0^infty x^2e^-xsum_n=0^infty (-1)^n (n+1) e^-nx\=2sum_n=0^infty (-1)^n(n+1) int_0^infty x^2 e^-(n+1)xdx\=4sum_n=0^infty frac(-1)^n(n+1)^2.$$ Then we have $$ sum_n=0^infty frac(-1)^n(n+1)^2 = 1-frac12^2 + frac13^2ldots = (1-frac22^2)(1+frac12^2 + frac13^2ldots) = fracpi^212$$
Edit
Realized this can be simplified somewhat by first doing an integration by parts $$ 2int_0^infty fracx^2 e^x(e^x+1)^2dx = 4int_0^infty fracxe^x+1dx$$ followed by a similar series expansion. Additionally, this solution somewhat 'misses the point' relative to contour integration approaches since that's one of the slicker ways to get $sum_n1/n^2=pi^2/6$ in the first place (and also transformation from the sums to integrals like this are the source of many zeta function identities).
add a comment |
up vote
6
down vote
up vote
6
down vote
First off, notice the integrand is even, so we have $$ int_-infty^infty fracx^2 e^x(e^x+1)^2dx = 2int_0^infty fracx^2 e^x(e^x+1)^2dx.$$ Then we can expand $$ frac1(1+x)^2 = sum_n=0^infty (-1)^n(n+1) x^n $$ and write $$ 2int_0^infty fracx^2 e^x(e^x+1)^2dx=\ =2int_0^infty fracx^2 e^-x(e^-x+1)^2dx \ = 2 int_0^infty x^2e^-xsum_n=0^infty (-1)^n (n+1) e^-nx\=2sum_n=0^infty (-1)^n(n+1) int_0^infty x^2 e^-(n+1)xdx\=4sum_n=0^infty frac(-1)^n(n+1)^2.$$ Then we have $$ sum_n=0^infty frac(-1)^n(n+1)^2 = 1-frac12^2 + frac13^2ldots = (1-frac22^2)(1+frac12^2 + frac13^2ldots) = fracpi^212$$
Edit
Realized this can be simplified somewhat by first doing an integration by parts $$ 2int_0^infty fracx^2 e^x(e^x+1)^2dx = 4int_0^infty fracxe^x+1dx$$ followed by a similar series expansion. Additionally, this solution somewhat 'misses the point' relative to contour integration approaches since that's one of the slicker ways to get $sum_n1/n^2=pi^2/6$ in the first place (and also transformation from the sums to integrals like this are the source of many zeta function identities).
First off, notice the integrand is even, so we have $$ int_-infty^infty fracx^2 e^x(e^x+1)^2dx = 2int_0^infty fracx^2 e^x(e^x+1)^2dx.$$ Then we can expand $$ frac1(1+x)^2 = sum_n=0^infty (-1)^n(n+1) x^n $$ and write $$ 2int_0^infty fracx^2 e^x(e^x+1)^2dx=\ =2int_0^infty fracx^2 e^-x(e^-x+1)^2dx \ = 2 int_0^infty x^2e^-xsum_n=0^infty (-1)^n (n+1) e^-nx\=2sum_n=0^infty (-1)^n(n+1) int_0^infty x^2 e^-(n+1)xdx\=4sum_n=0^infty frac(-1)^n(n+1)^2.$$ Then we have $$ sum_n=0^infty frac(-1)^n(n+1)^2 = 1-frac12^2 + frac13^2ldots = (1-frac22^2)(1+frac12^2 + frac13^2ldots) = fracpi^212$$
Edit
Realized this can be simplified somewhat by first doing an integration by parts $$ 2int_0^infty fracx^2 e^x(e^x+1)^2dx = 4int_0^infty fracxe^x+1dx$$ followed by a similar series expansion. Additionally, this solution somewhat 'misses the point' relative to contour integration approaches since that's one of the slicker ways to get $sum_n1/n^2=pi^2/6$ in the first place (and also transformation from the sums to integrals like this are the source of many zeta function identities).
edited 21 hours ago
answered 22 hours ago
spaceisdarkgreen
31.1k21552
31.1k21552
add a comment |
add a comment |
up vote
4
down vote
You have
$$
int_-infty^inftyfracx^2 e^x(e^x+1)^2,mathrmdx=
int_-infty^inftyfracx^22(cosh x+1),mathrmdx
$$
So integrate $dfracz^31+cosh z$ around rectangle $pm Rpm2pi i$, we have encircled a simple pole at $pi i$ with residue $6pi^2$. The vertical sides contribution is $to 0$ as $Rtoinfty$ because of cosh in the denominator, and the horizontal contribution
$$
int_-infty^inftyfracx^31+cosh x,mathrmdx+int_infty^-inftyfrac(x+2pi i)^31+underbracecosh(x+2pi i)_=cosh x,mathrmdx
$$
whose imaginary part is
$$
2piint_infty^-inftyfrac3x^2-4pi^21+cosh(x),mathrmdx.
$$
So
$$
3int_infty^-inftyfracx^21+cosh(x),mathrmdx
-4pi^2int_infty^-inftyfrac11+cosh(x),mathrmdx
=6pi^2
$$
i.e.,
beginalign
int_-infty^inftyfracx^22(1+cosh(x)),mathrmdx
&=-pi^2
+frac43pi^2int_-infty^inftyfrac12(1+cosh(x)),mathrmdx
\
&=-pi^2+frac43pi^2=frac13pi^2
endalign
since
$$
int_-infty^inftyfrac12(cosh x+1),mathrmdx=int_-infty^inftyfrac14operatornamesech^2frac x2,mathrmdx=left[frac12tanhfrac x2right]_-infty^infty=1.
$$
add a comment |
up vote
4
down vote
You have
$$
int_-infty^inftyfracx^2 e^x(e^x+1)^2,mathrmdx=
int_-infty^inftyfracx^22(cosh x+1),mathrmdx
$$
So integrate $dfracz^31+cosh z$ around rectangle $pm Rpm2pi i$, we have encircled a simple pole at $pi i$ with residue $6pi^2$. The vertical sides contribution is $to 0$ as $Rtoinfty$ because of cosh in the denominator, and the horizontal contribution
$$
int_-infty^inftyfracx^31+cosh x,mathrmdx+int_infty^-inftyfrac(x+2pi i)^31+underbracecosh(x+2pi i)_=cosh x,mathrmdx
$$
whose imaginary part is
$$
2piint_infty^-inftyfrac3x^2-4pi^21+cosh(x),mathrmdx.
$$
So
$$
3int_infty^-inftyfracx^21+cosh(x),mathrmdx
-4pi^2int_infty^-inftyfrac11+cosh(x),mathrmdx
=6pi^2
$$
i.e.,
beginalign
int_-infty^inftyfracx^22(1+cosh(x)),mathrmdx
&=-pi^2
+frac43pi^2int_-infty^inftyfrac12(1+cosh(x)),mathrmdx
\
&=-pi^2+frac43pi^2=frac13pi^2
endalign
since
$$
int_-infty^inftyfrac12(cosh x+1),mathrmdx=int_-infty^inftyfrac14operatornamesech^2frac x2,mathrmdx=left[frac12tanhfrac x2right]_-infty^infty=1.
$$
add a comment |
up vote
4
down vote
up vote
4
down vote
You have
$$
int_-infty^inftyfracx^2 e^x(e^x+1)^2,mathrmdx=
int_-infty^inftyfracx^22(cosh x+1),mathrmdx
$$
So integrate $dfracz^31+cosh z$ around rectangle $pm Rpm2pi i$, we have encircled a simple pole at $pi i$ with residue $6pi^2$. The vertical sides contribution is $to 0$ as $Rtoinfty$ because of cosh in the denominator, and the horizontal contribution
$$
int_-infty^inftyfracx^31+cosh x,mathrmdx+int_infty^-inftyfrac(x+2pi i)^31+underbracecosh(x+2pi i)_=cosh x,mathrmdx
$$
whose imaginary part is
$$
2piint_infty^-inftyfrac3x^2-4pi^21+cosh(x),mathrmdx.
$$
So
$$
3int_infty^-inftyfracx^21+cosh(x),mathrmdx
-4pi^2int_infty^-inftyfrac11+cosh(x),mathrmdx
=6pi^2
$$
i.e.,
beginalign
int_-infty^inftyfracx^22(1+cosh(x)),mathrmdx
&=-pi^2
+frac43pi^2int_-infty^inftyfrac12(1+cosh(x)),mathrmdx
\
&=-pi^2+frac43pi^2=frac13pi^2
endalign
since
$$
int_-infty^inftyfrac12(cosh x+1),mathrmdx=int_-infty^inftyfrac14operatornamesech^2frac x2,mathrmdx=left[frac12tanhfrac x2right]_-infty^infty=1.
$$
You have
$$
int_-infty^inftyfracx^2 e^x(e^x+1)^2,mathrmdx=
int_-infty^inftyfracx^22(cosh x+1),mathrmdx
$$
So integrate $dfracz^31+cosh z$ around rectangle $pm Rpm2pi i$, we have encircled a simple pole at $pi i$ with residue $6pi^2$. The vertical sides contribution is $to 0$ as $Rtoinfty$ because of cosh in the denominator, and the horizontal contribution
$$
int_-infty^inftyfracx^31+cosh x,mathrmdx+int_infty^-inftyfrac(x+2pi i)^31+underbracecosh(x+2pi i)_=cosh x,mathrmdx
$$
whose imaginary part is
$$
2piint_infty^-inftyfrac3x^2-4pi^21+cosh(x),mathrmdx.
$$
So
$$
3int_infty^-inftyfracx^21+cosh(x),mathrmdx
-4pi^2int_infty^-inftyfrac11+cosh(x),mathrmdx
=6pi^2
$$
i.e.,
beginalign
int_-infty^inftyfracx^22(1+cosh(x)),mathrmdx
&=-pi^2
+frac43pi^2int_-infty^inftyfrac12(1+cosh(x)),mathrmdx
\
&=-pi^2+frac43pi^2=frac13pi^2
endalign
since
$$
int_-infty^inftyfrac12(cosh x+1),mathrmdx=int_-infty^inftyfrac14operatornamesech^2frac x2,mathrmdx=left[frac12tanhfrac x2right]_-infty^infty=1.
$$
answered 22 hours ago
user10354138
6,154523
6,154523
add a comment |
add a comment |
up vote
4
down vote
Substitute $e^x=t$ we get $$I=int_0^infty frac ln^2t dt(1+t)^2$$
Let $$J(a)=int_0^infty frac t^a-1dt(1+t)^2$$
So we need to find $J''(1)$
Notice that $$J(a)=B(a,2-a)=frac Gamma(a)Gamma(2-a)Gamma(2)$$
Where $B(x,y)$ is Standard beta function and $Gamma(x)$ is the Gamma function
Using the properties of Gamma function and Euler's reflection formula we have $$J(a)=Gamma(a) cdot(1-a)Gamma(1-a)=pi frac 1-asin pi a$$
Differentiating twice w.r.t $a$ and taking limit $ato 1$ gives the desired result
add a comment |
up vote
4
down vote
Substitute $e^x=t$ we get $$I=int_0^infty frac ln^2t dt(1+t)^2$$
Let $$J(a)=int_0^infty frac t^a-1dt(1+t)^2$$
So we need to find $J''(1)$
Notice that $$J(a)=B(a,2-a)=frac Gamma(a)Gamma(2-a)Gamma(2)$$
Where $B(x,y)$ is Standard beta function and $Gamma(x)$ is the Gamma function
Using the properties of Gamma function and Euler's reflection formula we have $$J(a)=Gamma(a) cdot(1-a)Gamma(1-a)=pi frac 1-asin pi a$$
Differentiating twice w.r.t $a$ and taking limit $ato 1$ gives the desired result
add a comment |
up vote
4
down vote
up vote
4
down vote
Substitute $e^x=t$ we get $$I=int_0^infty frac ln^2t dt(1+t)^2$$
Let $$J(a)=int_0^infty frac t^a-1dt(1+t)^2$$
So we need to find $J''(1)$
Notice that $$J(a)=B(a,2-a)=frac Gamma(a)Gamma(2-a)Gamma(2)$$
Where $B(x,y)$ is Standard beta function and $Gamma(x)$ is the Gamma function
Using the properties of Gamma function and Euler's reflection formula we have $$J(a)=Gamma(a) cdot(1-a)Gamma(1-a)=pi frac 1-asin pi a$$
Differentiating twice w.r.t $a$ and taking limit $ato 1$ gives the desired result
Substitute $e^x=t$ we get $$I=int_0^infty frac ln^2t dt(1+t)^2$$
Let $$J(a)=int_0^infty frac t^a-1dt(1+t)^2$$
So we need to find $J''(1)$
Notice that $$J(a)=B(a,2-a)=frac Gamma(a)Gamma(2-a)Gamma(2)$$
Where $B(x,y)$ is Standard beta function and $Gamma(x)$ is the Gamma function
Using the properties of Gamma function and Euler's reflection formula we have $$J(a)=Gamma(a) cdot(1-a)Gamma(1-a)=pi frac 1-asin pi a$$
Differentiating twice w.r.t $a$ and taking limit $ato 1$ gives the desired result
answered 22 hours ago
Digamma
5,8001437
5,8001437
add a comment |
add a comment |
up vote
1
down vote
Here we use Feynman's Trick to facilitate analysis. Proceeding, we have
$$beginalign
I&=int_-infty^infty fracx^2e^x(e^x+1)^2,dx\\
&=2int_0^infty fracx^2e^x(e^x+1)^2,dx\\
&=-2left.left(fracddyint_0^infty fracx^2ye^x+1,dxright)right|_y=1\\
&=-2left.left(fracddyint_0^infty fracx^2e^-xe^-x+y,dxright)right|_y=1\\
&=-2left.fracddyleft(frac1yint_0^infty fracx^2e^-xe^-x/y+1,dxright)right|_y=1\\
&=-2left.fracddyleft(sum_n=0^infty frac(-1)^ny^n+1int_0^infty x^2e^-(n+1)x,dxright)right|_y=1\\
&=-4left.fracddyleft(sum_n=0^infty frac(-1)^ny^n+1(n+1)^3right)right|_y=1\\
&=4sum_n=1^infty frac(-1)^n+1n^2\\
&=4fracpi^212\\
&=fracpi^23
endalign$$
add a comment |
up vote
1
down vote
Here we use Feynman's Trick to facilitate analysis. Proceeding, we have
$$beginalign
I&=int_-infty^infty fracx^2e^x(e^x+1)^2,dx\\
&=2int_0^infty fracx^2e^x(e^x+1)^2,dx\\
&=-2left.left(fracddyint_0^infty fracx^2ye^x+1,dxright)right|_y=1\\
&=-2left.left(fracddyint_0^infty fracx^2e^-xe^-x+y,dxright)right|_y=1\\
&=-2left.fracddyleft(frac1yint_0^infty fracx^2e^-xe^-x/y+1,dxright)right|_y=1\\
&=-2left.fracddyleft(sum_n=0^infty frac(-1)^ny^n+1int_0^infty x^2e^-(n+1)x,dxright)right|_y=1\\
&=-4left.fracddyleft(sum_n=0^infty frac(-1)^ny^n+1(n+1)^3right)right|_y=1\\
&=4sum_n=1^infty frac(-1)^n+1n^2\\
&=4fracpi^212\\
&=fracpi^23
endalign$$
add a comment |
up vote
1
down vote
up vote
1
down vote
Here we use Feynman's Trick to facilitate analysis. Proceeding, we have
$$beginalign
I&=int_-infty^infty fracx^2e^x(e^x+1)^2,dx\\
&=2int_0^infty fracx^2e^x(e^x+1)^2,dx\\
&=-2left.left(fracddyint_0^infty fracx^2ye^x+1,dxright)right|_y=1\\
&=-2left.left(fracddyint_0^infty fracx^2e^-xe^-x+y,dxright)right|_y=1\\
&=-2left.fracddyleft(frac1yint_0^infty fracx^2e^-xe^-x/y+1,dxright)right|_y=1\\
&=-2left.fracddyleft(sum_n=0^infty frac(-1)^ny^n+1int_0^infty x^2e^-(n+1)x,dxright)right|_y=1\\
&=-4left.fracddyleft(sum_n=0^infty frac(-1)^ny^n+1(n+1)^3right)right|_y=1\\
&=4sum_n=1^infty frac(-1)^n+1n^2\\
&=4fracpi^212\\
&=fracpi^23
endalign$$
Here we use Feynman's Trick to facilitate analysis. Proceeding, we have
$$beginalign
I&=int_-infty^infty fracx^2e^x(e^x+1)^2,dx\\
&=2int_0^infty fracx^2e^x(e^x+1)^2,dx\\
&=-2left.left(fracddyint_0^infty fracx^2ye^x+1,dxright)right|_y=1\\
&=-2left.left(fracddyint_0^infty fracx^2e^-xe^-x+y,dxright)right|_y=1\\
&=-2left.fracddyleft(frac1yint_0^infty fracx^2e^-xe^-x/y+1,dxright)right|_y=1\\
&=-2left.fracddyleft(sum_n=0^infty frac(-1)^ny^n+1int_0^infty x^2e^-(n+1)x,dxright)right|_y=1\\
&=-4left.fracddyleft(sum_n=0^infty frac(-1)^ny^n+1(n+1)^3right)right|_y=1\\
&=4sum_n=1^infty frac(-1)^n+1n^2\\
&=4fracpi^212\\
&=fracpi^23
endalign$$
answered 21 hours ago
Mark Viola
128k1273170
128k1273170
add a comment |
add a comment |
up vote
0
down vote
my first thought was trying substitution:
$$I=int_-infty^inftyfracx^2e^x(e^x+1)^2dx$$
$u=e^x+1,,dx=fracdue^x$
$$I=int_1^inftyfracx^2u^2du=int_1^inftyfracln^2(u-1)u^2du$$
if we now let:
$$I(a)=int_1^inftyfracln(au-1)u^2du$$
then:
$$I''(a)=int_1^inftyln(au-1)du$$
$v=au-1,,du=fracdva$
$$I''(a)=frac1aint_a^inftyln(v)dv$$
although this leaves us with a divergent integral, which does not help.
Another approach:
$$I=int_-infty^inftyfracx^2e^x(e^x+1)^2dx=int_-infty^inftyfracx^2[(e^x+1)-1](e^x+1)^2dx=int_-infty^inftyfracx^2e^x+1dx-int_-infty^inftyfracx^2(e^x+1)^2dx$$
add a comment |
up vote
0
down vote
my first thought was trying substitution:
$$I=int_-infty^inftyfracx^2e^x(e^x+1)^2dx$$
$u=e^x+1,,dx=fracdue^x$
$$I=int_1^inftyfracx^2u^2du=int_1^inftyfracln^2(u-1)u^2du$$
if we now let:
$$I(a)=int_1^inftyfracln(au-1)u^2du$$
then:
$$I''(a)=int_1^inftyln(au-1)du$$
$v=au-1,,du=fracdva$
$$I''(a)=frac1aint_a^inftyln(v)dv$$
although this leaves us with a divergent integral, which does not help.
Another approach:
$$I=int_-infty^inftyfracx^2e^x(e^x+1)^2dx=int_-infty^inftyfracx^2[(e^x+1)-1](e^x+1)^2dx=int_-infty^inftyfracx^2e^x+1dx-int_-infty^inftyfracx^2(e^x+1)^2dx$$
add a comment |
up vote
0
down vote
up vote
0
down vote
my first thought was trying substitution:
$$I=int_-infty^inftyfracx^2e^x(e^x+1)^2dx$$
$u=e^x+1,,dx=fracdue^x$
$$I=int_1^inftyfracx^2u^2du=int_1^inftyfracln^2(u-1)u^2du$$
if we now let:
$$I(a)=int_1^inftyfracln(au-1)u^2du$$
then:
$$I''(a)=int_1^inftyln(au-1)du$$
$v=au-1,,du=fracdva$
$$I''(a)=frac1aint_a^inftyln(v)dv$$
although this leaves us with a divergent integral, which does not help.
Another approach:
$$I=int_-infty^inftyfracx^2e^x(e^x+1)^2dx=int_-infty^inftyfracx^2[(e^x+1)-1](e^x+1)^2dx=int_-infty^inftyfracx^2e^x+1dx-int_-infty^inftyfracx^2(e^x+1)^2dx$$
my first thought was trying substitution:
$$I=int_-infty^inftyfracx^2e^x(e^x+1)^2dx$$
$u=e^x+1,,dx=fracdue^x$
$$I=int_1^inftyfracx^2u^2du=int_1^inftyfracln^2(u-1)u^2du$$
if we now let:
$$I(a)=int_1^inftyfracln(au-1)u^2du$$
then:
$$I''(a)=int_1^inftyln(au-1)du$$
$v=au-1,,du=fracdva$
$$I''(a)=frac1aint_a^inftyln(v)dv$$
although this leaves us with a divergent integral, which does not help.
Another approach:
$$I=int_-infty^inftyfracx^2e^x(e^x+1)^2dx=int_-infty^inftyfracx^2[(e^x+1)-1](e^x+1)^2dx=int_-infty^inftyfracx^2e^x+1dx-int_-infty^inftyfracx^2(e^x+1)^2dx$$
answered 22 hours ago
Henry Lee
1,567117
1,567117
add a comment |
add a comment |
up vote
0
down vote
The integral you are interested in can be rewritten in the form: $$int_-infty^inftyfracx^22 cosh(x)+2 dx$$
Several techniques for solving integrals similar to this can be found at:
Improper Integral of $x^2/cosh(x)$
New contributor
add a comment |
up vote
0
down vote
The integral you are interested in can be rewritten in the form: $$int_-infty^inftyfracx^22 cosh(x)+2 dx$$
Several techniques for solving integrals similar to this can be found at:
Improper Integral of $x^2/cosh(x)$
New contributor
add a comment |
up vote
0
down vote
up vote
0
down vote
The integral you are interested in can be rewritten in the form: $$int_-infty^inftyfracx^22 cosh(x)+2 dx$$
Several techniques for solving integrals similar to this can be found at:
Improper Integral of $x^2/cosh(x)$
New contributor
The integral you are interested in can be rewritten in the form: $$int_-infty^inftyfracx^22 cosh(x)+2 dx$$
Several techniques for solving integrals similar to this can be found at:
Improper Integral of $x^2/cosh(x)$
New contributor
New contributor
answered 22 hours ago
Nebu
263
263
New contributor
New contributor
add a comment |
add a comment |
up vote
0
down vote
One of the standard solutions for evaluating difficult integrals is to transform the integrand into an infinite sequence and then integrating termwise. Indeed, if we start off with the geometric sum$$sumlimits_ngeq0x^n=frac 11-x$$multiply both sides by $x$ and differentiating with respect to $x$, it's easy to see that$$sumlimits_ngeq0(n+1)x^n=frac 1(1-x)^2$$Replace $x$ with $-e^-x$ in the problem and calling the integral $mathfrakI$, the problem transforms into$$beginalign*mathfrakI & =2sumlimits_ngeq0(-1)^n(n+1)intlimits_0^inftymathrm dx,x^2 e^-(n+1)xendalign*$$The remaining integral can be evaluated using integration by parts on $u=x^2$ to get$$mathfrak I=4sumlimits_ngeq0frac (-1)^n(n+1)^2=4sumlimits_ngeq1frac (-1)^n-1n^2$$The inner sum is equal to $pi^2/12$ and is due to the identity$$eta(s)=(1-2^1-s)zeta(s)$$Where$$eta(s)=sumlimits_ngeq1frac (-1)^n-1n^s$$$$zeta(s)=sumlimits_ngeq1frac 1n^s$$Since $zeta(2)=pi^2/6$, the result follows immediately$$intlimits_-infty^inftymathrm dx,frac x^2e^x(1+e^x)^2colorblue=frac pi^23$$
add a comment |
up vote
0
down vote
One of the standard solutions for evaluating difficult integrals is to transform the integrand into an infinite sequence and then integrating termwise. Indeed, if we start off with the geometric sum$$sumlimits_ngeq0x^n=frac 11-x$$multiply both sides by $x$ and differentiating with respect to $x$, it's easy to see that$$sumlimits_ngeq0(n+1)x^n=frac 1(1-x)^2$$Replace $x$ with $-e^-x$ in the problem and calling the integral $mathfrakI$, the problem transforms into$$beginalign*mathfrakI & =2sumlimits_ngeq0(-1)^n(n+1)intlimits_0^inftymathrm dx,x^2 e^-(n+1)xendalign*$$The remaining integral can be evaluated using integration by parts on $u=x^2$ to get$$mathfrak I=4sumlimits_ngeq0frac (-1)^n(n+1)^2=4sumlimits_ngeq1frac (-1)^n-1n^2$$The inner sum is equal to $pi^2/12$ and is due to the identity$$eta(s)=(1-2^1-s)zeta(s)$$Where$$eta(s)=sumlimits_ngeq1frac (-1)^n-1n^s$$$$zeta(s)=sumlimits_ngeq1frac 1n^s$$Since $zeta(2)=pi^2/6$, the result follows immediately$$intlimits_-infty^inftymathrm dx,frac x^2e^x(1+e^x)^2colorblue=frac pi^23$$
add a comment |
up vote
0
down vote
up vote
0
down vote
One of the standard solutions for evaluating difficult integrals is to transform the integrand into an infinite sequence and then integrating termwise. Indeed, if we start off with the geometric sum$$sumlimits_ngeq0x^n=frac 11-x$$multiply both sides by $x$ and differentiating with respect to $x$, it's easy to see that$$sumlimits_ngeq0(n+1)x^n=frac 1(1-x)^2$$Replace $x$ with $-e^-x$ in the problem and calling the integral $mathfrakI$, the problem transforms into$$beginalign*mathfrakI & =2sumlimits_ngeq0(-1)^n(n+1)intlimits_0^inftymathrm dx,x^2 e^-(n+1)xendalign*$$The remaining integral can be evaluated using integration by parts on $u=x^2$ to get$$mathfrak I=4sumlimits_ngeq0frac (-1)^n(n+1)^2=4sumlimits_ngeq1frac (-1)^n-1n^2$$The inner sum is equal to $pi^2/12$ and is due to the identity$$eta(s)=(1-2^1-s)zeta(s)$$Where$$eta(s)=sumlimits_ngeq1frac (-1)^n-1n^s$$$$zeta(s)=sumlimits_ngeq1frac 1n^s$$Since $zeta(2)=pi^2/6$, the result follows immediately$$intlimits_-infty^inftymathrm dx,frac x^2e^x(1+e^x)^2colorblue=frac pi^23$$
One of the standard solutions for evaluating difficult integrals is to transform the integrand into an infinite sequence and then integrating termwise. Indeed, if we start off with the geometric sum$$sumlimits_ngeq0x^n=frac 11-x$$multiply both sides by $x$ and differentiating with respect to $x$, it's easy to see that$$sumlimits_ngeq0(n+1)x^n=frac 1(1-x)^2$$Replace $x$ with $-e^-x$ in the problem and calling the integral $mathfrakI$, the problem transforms into$$beginalign*mathfrakI & =2sumlimits_ngeq0(-1)^n(n+1)intlimits_0^inftymathrm dx,x^2 e^-(n+1)xendalign*$$The remaining integral can be evaluated using integration by parts on $u=x^2$ to get$$mathfrak I=4sumlimits_ngeq0frac (-1)^n(n+1)^2=4sumlimits_ngeq1frac (-1)^n-1n^2$$The inner sum is equal to $pi^2/12$ and is due to the identity$$eta(s)=(1-2^1-s)zeta(s)$$Where$$eta(s)=sumlimits_ngeq1frac (-1)^n-1n^s$$$$zeta(s)=sumlimits_ngeq1frac 1n^s$$Since $zeta(2)=pi^2/6$, the result follows immediately$$intlimits_-infty^inftymathrm dx,frac x^2e^x(1+e^x)^2colorblue=frac pi^23$$
answered 21 hours ago
Frank W.
2,6111316
2,6111316
add a comment |
add a comment |
up vote
0
down vote
We could even compute the antiderivative since
$$I=intfracx^2 e^x(e^x+1)^2,dx=x left(frace^x xe^x+1-2 log left(e^x+1right)right)-2 textLi_2left(-e^xright)$$ making
$$J=int_0^pfracx^2 e^x(e^x+1)^2,dx=frace^p p^2e^p+1-2 textLi_2left(-e^pright)-2 p log
left(e^p+1right)-fracpi ^26$$ Expanding as series for large values of $p$
$$J=left(2-frac1e^p+1right) p^2+frac12 e^-2 p left(1-4
e^pright)+fracpi ^26-2 p log left(e^p+1right)+cdots$$ which shows the limit and which is a quite good approximation even for small values of $p$
$$left(
beginarrayccc
p & textapproximation & textexact \
1 & 0.08137802971721 & 0.07217327763488 \
2 & 0.39889758755901 & 0.39838536515902 \
3 & 0.82824233816028 & 0.82821565813003 \
4 & 1.17549173764877 & 1.17549038617232 \
5 & 1.39700611481663 & 1.39700604709488 \
6 & 1.52125697930945 & 1.52125697592972 \
7 & 1.58570867980301 & 1.58570867963459 \
8 & 1.61743428754382 & 1.61743428753543 \
9 & 1.63247105478514 & 1.63247105478472 \
10 & 1.63939550316470 & 1.63939550316468
endarray
right)$$
add a comment |
up vote
0
down vote
We could even compute the antiderivative since
$$I=intfracx^2 e^x(e^x+1)^2,dx=x left(frace^x xe^x+1-2 log left(e^x+1right)right)-2 textLi_2left(-e^xright)$$ making
$$J=int_0^pfracx^2 e^x(e^x+1)^2,dx=frace^p p^2e^p+1-2 textLi_2left(-e^pright)-2 p log
left(e^p+1right)-fracpi ^26$$ Expanding as series for large values of $p$
$$J=left(2-frac1e^p+1right) p^2+frac12 e^-2 p left(1-4
e^pright)+fracpi ^26-2 p log left(e^p+1right)+cdots$$ which shows the limit and which is a quite good approximation even for small values of $p$
$$left(
beginarrayccc
p & textapproximation & textexact \
1 & 0.08137802971721 & 0.07217327763488 \
2 & 0.39889758755901 & 0.39838536515902 \
3 & 0.82824233816028 & 0.82821565813003 \
4 & 1.17549173764877 & 1.17549038617232 \
5 & 1.39700611481663 & 1.39700604709488 \
6 & 1.52125697930945 & 1.52125697592972 \
7 & 1.58570867980301 & 1.58570867963459 \
8 & 1.61743428754382 & 1.61743428753543 \
9 & 1.63247105478514 & 1.63247105478472 \
10 & 1.63939550316470 & 1.63939550316468
endarray
right)$$
add a comment |
up vote
0
down vote
up vote
0
down vote
We could even compute the antiderivative since
$$I=intfracx^2 e^x(e^x+1)^2,dx=x left(frace^x xe^x+1-2 log left(e^x+1right)right)-2 textLi_2left(-e^xright)$$ making
$$J=int_0^pfracx^2 e^x(e^x+1)^2,dx=frace^p p^2e^p+1-2 textLi_2left(-e^pright)-2 p log
left(e^p+1right)-fracpi ^26$$ Expanding as series for large values of $p$
$$J=left(2-frac1e^p+1right) p^2+frac12 e^-2 p left(1-4
e^pright)+fracpi ^26-2 p log left(e^p+1right)+cdots$$ which shows the limit and which is a quite good approximation even for small values of $p$
$$left(
beginarrayccc
p & textapproximation & textexact \
1 & 0.08137802971721 & 0.07217327763488 \
2 & 0.39889758755901 & 0.39838536515902 \
3 & 0.82824233816028 & 0.82821565813003 \
4 & 1.17549173764877 & 1.17549038617232 \
5 & 1.39700611481663 & 1.39700604709488 \
6 & 1.52125697930945 & 1.52125697592972 \
7 & 1.58570867980301 & 1.58570867963459 \
8 & 1.61743428754382 & 1.61743428753543 \
9 & 1.63247105478514 & 1.63247105478472 \
10 & 1.63939550316470 & 1.63939550316468
endarray
right)$$
We could even compute the antiderivative since
$$I=intfracx^2 e^x(e^x+1)^2,dx=x left(frace^x xe^x+1-2 log left(e^x+1right)right)-2 textLi_2left(-e^xright)$$ making
$$J=int_0^pfracx^2 e^x(e^x+1)^2,dx=frace^p p^2e^p+1-2 textLi_2left(-e^pright)-2 p log
left(e^p+1right)-fracpi ^26$$ Expanding as series for large values of $p$
$$J=left(2-frac1e^p+1right) p^2+frac12 e^-2 p left(1-4
e^pright)+fracpi ^26-2 p log left(e^p+1right)+cdots$$ which shows the limit and which is a quite good approximation even for small values of $p$
$$left(
beginarrayccc
p & textapproximation & textexact \
1 & 0.08137802971721 & 0.07217327763488 \
2 & 0.39889758755901 & 0.39838536515902 \
3 & 0.82824233816028 & 0.82821565813003 \
4 & 1.17549173764877 & 1.17549038617232 \
5 & 1.39700611481663 & 1.39700604709488 \
6 & 1.52125697930945 & 1.52125697592972 \
7 & 1.58570867980301 & 1.58570867963459 \
8 & 1.61743428754382 & 1.61743428753543 \
9 & 1.63247105478514 & 1.63247105478472 \
10 & 1.63939550316470 & 1.63939550316468
endarray
right)$$
answered 20 hours ago
Claude Leibovici
116k1155131
116k1155131
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996201%2fhow-to-evaluate-int-infty-inftydx-fracx2-exex12%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password