How to evaluate $int_-infty^inftydx fracx^2 e^x(e^x+1)^2$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
5
down vote

favorite
3












My physics textbook makes use of the result:
$$int_-infty^inftydx dfracx^2 e^x(e^x+1)^2 = dfracpi^23$$
I'm really curious on how I can derive this but I honestly don't know what to search for. My instinct is to transform to polar coordinates but I would like some guidance. Any help appreciated!










share|cite|improve this question



























    up vote
    5
    down vote

    favorite
    3












    My physics textbook makes use of the result:
    $$int_-infty^inftydx dfracx^2 e^x(e^x+1)^2 = dfracpi^23$$
    I'm really curious on how I can derive this but I honestly don't know what to search for. My instinct is to transform to polar coordinates but I would like some guidance. Any help appreciated!










    share|cite|improve this question

























      up vote
      5
      down vote

      favorite
      3









      up vote
      5
      down vote

      favorite
      3






      3





      My physics textbook makes use of the result:
      $$int_-infty^inftydx dfracx^2 e^x(e^x+1)^2 = dfracpi^23$$
      I'm really curious on how I can derive this but I honestly don't know what to search for. My instinct is to transform to polar coordinates but I would like some guidance. Any help appreciated!










      share|cite|improve this question















      My physics textbook makes use of the result:
      $$int_-infty^inftydx dfracx^2 e^x(e^x+1)^2 = dfracpi^23$$
      I'm really curious on how I can derive this but I honestly don't know what to search for. My instinct is to transform to polar coordinates but I would like some guidance. Any help appreciated!







      integration definite-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 18 hours ago









      Asaf Karagila

      299k32419748




      299k32419748










      asked 23 hours ago









      Ayumu Kasugano

      1916




      1916




















          8 Answers
          8






          active

          oldest

          votes

















          up vote
          6
          down vote













          First off, notice the integrand is even, so we have $$ int_-infty^infty fracx^2 e^x(e^x+1)^2dx = 2int_0^infty fracx^2 e^x(e^x+1)^2dx.$$ Then we can expand $$ frac1(1+x)^2 = sum_n=0^infty (-1)^n(n+1) x^n $$ and write $$ 2int_0^infty fracx^2 e^x(e^x+1)^2dx=\ =2int_0^infty fracx^2 e^-x(e^-x+1)^2dx \ = 2 int_0^infty x^2e^-xsum_n=0^infty (-1)^n (n+1) e^-nx\=2sum_n=0^infty (-1)^n(n+1) int_0^infty x^2 e^-(n+1)xdx\=4sum_n=0^infty frac(-1)^n(n+1)^2.$$ Then we have $$ sum_n=0^infty frac(-1)^n(n+1)^2 = 1-frac12^2 + frac13^2ldots = (1-frac22^2)(1+frac12^2 + frac13^2ldots) = fracpi^212$$



          Edit
          Realized this can be simplified somewhat by first doing an integration by parts $$ 2int_0^infty fracx^2 e^x(e^x+1)^2dx = 4int_0^infty fracxe^x+1dx$$ followed by a similar series expansion. Additionally, this solution somewhat 'misses the point' relative to contour integration approaches since that's one of the slicker ways to get $sum_n1/n^2=pi^2/6$ in the first place (and also transformation from the sums to integrals like this are the source of many zeta function identities).






          share|cite|improve this answer





























            up vote
            4
            down vote













            You have
            $$
            int_-infty^inftyfracx^2 e^x(e^x+1)^2,mathrmdx=
            int_-infty^inftyfracx^22(cosh x+1),mathrmdx
            $$

            So integrate $dfracz^31+cosh z$ around rectangle $pm Rpm2pi i$, we have encircled a simple pole at $pi i$ with residue $6pi^2$. The vertical sides contribution is $to 0$ as $Rtoinfty$ because of cosh in the denominator, and the horizontal contribution
            $$
            int_-infty^inftyfracx^31+cosh x,mathrmdx+int_infty^-inftyfrac(x+2pi i)^31+underbracecosh(x+2pi i)_=cosh x,mathrmdx
            $$

            whose imaginary part is
            $$
            2piint_infty^-inftyfrac3x^2-4pi^21+cosh(x),mathrmdx.
            $$

            So
            $$
            3int_infty^-inftyfracx^21+cosh(x),mathrmdx
            -4pi^2int_infty^-inftyfrac11+cosh(x),mathrmdx
            =6pi^2
            $$

            i.e.,
            beginalign
            int_-infty^inftyfracx^22(1+cosh(x)),mathrmdx
            &=-pi^2
            +frac43pi^2int_-infty^inftyfrac12(1+cosh(x)),mathrmdx
            \
            &=-pi^2+frac43pi^2=frac13pi^2
            endalign

            since
            $$
            int_-infty^inftyfrac12(cosh x+1),mathrmdx=int_-infty^inftyfrac14operatornamesech^2frac x2,mathrmdx=left[frac12tanhfrac x2right]_-infty^infty=1.
            $$






            share|cite|improve this answer



























              up vote
              4
              down vote













              Substitute $e^x=t$ we get $$I=int_0^infty frac ln^2t dt(1+t)^2$$



              Let $$J(a)=int_0^infty frac t^a-1dt(1+t)^2$$



              So we need to find $J''(1)$



              Notice that $$J(a)=B(a,2-a)=frac Gamma(a)Gamma(2-a)Gamma(2)$$



              Where $B(x,y)$ is Standard beta function and $Gamma(x)$ is the Gamma function



              Using the properties of Gamma function and Euler's reflection formula we have $$J(a)=Gamma(a) cdot(1-a)Gamma(1-a)=pi frac 1-asin pi a$$



              Differentiating twice w.r.t $a$ and taking limit $ato 1$ gives the desired result






              share|cite|improve this answer



























                up vote
                1
                down vote













                Here we use Feynman's Trick to facilitate analysis. Proceeding, we have



                $$beginalign
                I&=int_-infty^infty fracx^2e^x(e^x+1)^2,dx\\
                &=2int_0^infty fracx^2e^x(e^x+1)^2,dx\\
                &=-2left.left(fracddyint_0^infty fracx^2ye^x+1,dxright)right|_y=1\\
                &=-2left.left(fracddyint_0^infty fracx^2e^-xe^-x+y,dxright)right|_y=1\\
                &=-2left.fracddyleft(frac1yint_0^infty fracx^2e^-xe^-x/y+1,dxright)right|_y=1\\
                &=-2left.fracddyleft(sum_n=0^infty frac(-1)^ny^n+1int_0^infty x^2e^-(n+1)x,dxright)right|_y=1\\
                &=-4left.fracddyleft(sum_n=0^infty frac(-1)^ny^n+1(n+1)^3right)right|_y=1\\
                &=4sum_n=1^infty frac(-1)^n+1n^2\\
                &=4fracpi^212\\
                &=fracpi^23
                endalign$$






                share|cite|improve this answer



























                  up vote
                  0
                  down vote













                  my first thought was trying substitution:
                  $$I=int_-infty^inftyfracx^2e^x(e^x+1)^2dx$$
                  $u=e^x+1,,dx=fracdue^x$
                  $$I=int_1^inftyfracx^2u^2du=int_1^inftyfracln^2(u-1)u^2du$$
                  if we now let:
                  $$I(a)=int_1^inftyfracln(au-1)u^2du$$
                  then:
                  $$I''(a)=int_1^inftyln(au-1)du$$
                  $v=au-1,,du=fracdva$
                  $$I''(a)=frac1aint_a^inftyln(v)dv$$
                  although this leaves us with a divergent integral, which does not help.



                  Another approach:
                  $$I=int_-infty^inftyfracx^2e^x(e^x+1)^2dx=int_-infty^inftyfracx^2[(e^x+1)-1](e^x+1)^2dx=int_-infty^inftyfracx^2e^x+1dx-int_-infty^inftyfracx^2(e^x+1)^2dx$$






                  share|cite|improve this answer



























                    up vote
                    0
                    down vote













                    The integral you are interested in can be rewritten in the form: $$int_-infty^inftyfracx^22 cosh(x)+2 dx$$



                    Several techniques for solving integrals similar to this can be found at:



                    Improper Integral of $x^2/cosh(x)$






                    share|cite|improve this answer








                    New contributor




                    Nebu is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.
























                      up vote
                      0
                      down vote













                      One of the standard solutions for evaluating difficult integrals is to transform the integrand into an infinite sequence and then integrating termwise. Indeed, if we start off with the geometric sum$$sumlimits_ngeq0x^n=frac 11-x$$multiply both sides by $x$ and differentiating with respect to $x$, it's easy to see that$$sumlimits_ngeq0(n+1)x^n=frac 1(1-x)^2$$Replace $x$ with $-e^-x$ in the problem and calling the integral $mathfrakI$, the problem transforms into$$beginalign*mathfrakI & =2sumlimits_ngeq0(-1)^n(n+1)intlimits_0^inftymathrm dx,x^2 e^-(n+1)xendalign*$$The remaining integral can be evaluated using integration by parts on $u=x^2$ to get$$mathfrak I=4sumlimits_ngeq0frac (-1)^n(n+1)^2=4sumlimits_ngeq1frac (-1)^n-1n^2$$The inner sum is equal to $pi^2/12$ and is due to the identity$$eta(s)=(1-2^1-s)zeta(s)$$Where$$eta(s)=sumlimits_ngeq1frac (-1)^n-1n^s$$$$zeta(s)=sumlimits_ngeq1frac 1n^s$$Since $zeta(2)=pi^2/6$, the result follows immediately$$intlimits_-infty^inftymathrm dx,frac x^2e^x(1+e^x)^2colorblue=frac pi^23$$






                      share|cite|improve this answer



























                        up vote
                        0
                        down vote













                        We could even compute the antiderivative since
                        $$I=intfracx^2 e^x(e^x+1)^2,dx=x left(frace^x xe^x+1-2 log left(e^x+1right)right)-2 textLi_2left(-e^xright)$$ making
                        $$J=int_0^pfracx^2 e^x(e^x+1)^2,dx=frace^p p^2e^p+1-2 textLi_2left(-e^pright)-2 p log
                        left(e^p+1right)-fracpi ^26$$
                        Expanding as series for large values of $p$
                        $$J=left(2-frac1e^p+1right) p^2+frac12 e^-2 p left(1-4
                        e^pright)+fracpi ^26-2 p log left(e^p+1right)+cdots$$
                        which shows the limit and which is a quite good approximation even for small values of $p$
                        $$left(
                        beginarrayccc
                        p & textapproximation & textexact \
                        1 & 0.08137802971721 & 0.07217327763488 \
                        2 & 0.39889758755901 & 0.39838536515902 \
                        3 & 0.82824233816028 & 0.82821565813003 \
                        4 & 1.17549173764877 & 1.17549038617232 \
                        5 & 1.39700611481663 & 1.39700604709488 \
                        6 & 1.52125697930945 & 1.52125697592972 \
                        7 & 1.58570867980301 & 1.58570867963459 \
                        8 & 1.61743428754382 & 1.61743428753543 \
                        9 & 1.63247105478514 & 1.63247105478472 \
                        10 & 1.63939550316470 & 1.63939550316468
                        endarray
                        right)$$






                        share|cite|improve this answer




















                          Your Answer





                          StackExchange.ifUsing("editor", function ()
                          return StackExchange.using("mathjaxEditing", function ()
                          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                          );
                          );
                          , "mathjax-editing");

                          StackExchange.ready(function()
                          var channelOptions =
                          tags: "".split(" "),
                          id: "69"
                          ;
                          initTagRenderer("".split(" "), "".split(" "), channelOptions);

                          StackExchange.using("externalEditor", function()
                          // Have to fire editor after snippets, if snippets enabled
                          if (StackExchange.settings.snippets.snippetsEnabled)
                          StackExchange.using("snippets", function()
                          createEditor();
                          );

                          else
                          createEditor();

                          );

                          function createEditor()
                          StackExchange.prepareEditor(
                          heartbeatType: 'answer',
                          convertImagesToLinks: true,
                          noModals: true,
                          showLowRepImageUploadWarning: true,
                          reputationToPostImages: 10,
                          bindNavPrevention: true,
                          postfix: "",
                          imageUploader:
                          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                          allowUrls: true
                          ,
                          noCode: true, onDemand: true,
                          discardSelector: ".discard-answer"
                          ,immediatelyShowMarkdownHelp:true
                          );



                          );













                           

                          draft saved


                          draft discarded


















                          StackExchange.ready(
                          function ()
                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996201%2fhow-to-evaluate-int-infty-inftydx-fracx2-exex12%23new-answer', 'question_page');

                          );

                          Post as a guest






























                          8 Answers
                          8






                          active

                          oldest

                          votes








                          8 Answers
                          8






                          active

                          oldest

                          votes









                          active

                          oldest

                          votes






                          active

                          oldest

                          votes








                          up vote
                          6
                          down vote













                          First off, notice the integrand is even, so we have $$ int_-infty^infty fracx^2 e^x(e^x+1)^2dx = 2int_0^infty fracx^2 e^x(e^x+1)^2dx.$$ Then we can expand $$ frac1(1+x)^2 = sum_n=0^infty (-1)^n(n+1) x^n $$ and write $$ 2int_0^infty fracx^2 e^x(e^x+1)^2dx=\ =2int_0^infty fracx^2 e^-x(e^-x+1)^2dx \ = 2 int_0^infty x^2e^-xsum_n=0^infty (-1)^n (n+1) e^-nx\=2sum_n=0^infty (-1)^n(n+1) int_0^infty x^2 e^-(n+1)xdx\=4sum_n=0^infty frac(-1)^n(n+1)^2.$$ Then we have $$ sum_n=0^infty frac(-1)^n(n+1)^2 = 1-frac12^2 + frac13^2ldots = (1-frac22^2)(1+frac12^2 + frac13^2ldots) = fracpi^212$$



                          Edit
                          Realized this can be simplified somewhat by first doing an integration by parts $$ 2int_0^infty fracx^2 e^x(e^x+1)^2dx = 4int_0^infty fracxe^x+1dx$$ followed by a similar series expansion. Additionally, this solution somewhat 'misses the point' relative to contour integration approaches since that's one of the slicker ways to get $sum_n1/n^2=pi^2/6$ in the first place (and also transformation from the sums to integrals like this are the source of many zeta function identities).






                          share|cite|improve this answer


























                            up vote
                            6
                            down vote













                            First off, notice the integrand is even, so we have $$ int_-infty^infty fracx^2 e^x(e^x+1)^2dx = 2int_0^infty fracx^2 e^x(e^x+1)^2dx.$$ Then we can expand $$ frac1(1+x)^2 = sum_n=0^infty (-1)^n(n+1) x^n $$ and write $$ 2int_0^infty fracx^2 e^x(e^x+1)^2dx=\ =2int_0^infty fracx^2 e^-x(e^-x+1)^2dx \ = 2 int_0^infty x^2e^-xsum_n=0^infty (-1)^n (n+1) e^-nx\=2sum_n=0^infty (-1)^n(n+1) int_0^infty x^2 e^-(n+1)xdx\=4sum_n=0^infty frac(-1)^n(n+1)^2.$$ Then we have $$ sum_n=0^infty frac(-1)^n(n+1)^2 = 1-frac12^2 + frac13^2ldots = (1-frac22^2)(1+frac12^2 + frac13^2ldots) = fracpi^212$$



                            Edit
                            Realized this can be simplified somewhat by first doing an integration by parts $$ 2int_0^infty fracx^2 e^x(e^x+1)^2dx = 4int_0^infty fracxe^x+1dx$$ followed by a similar series expansion. Additionally, this solution somewhat 'misses the point' relative to contour integration approaches since that's one of the slicker ways to get $sum_n1/n^2=pi^2/6$ in the first place (and also transformation from the sums to integrals like this are the source of many zeta function identities).






                            share|cite|improve this answer
























                              up vote
                              6
                              down vote










                              up vote
                              6
                              down vote









                              First off, notice the integrand is even, so we have $$ int_-infty^infty fracx^2 e^x(e^x+1)^2dx = 2int_0^infty fracx^2 e^x(e^x+1)^2dx.$$ Then we can expand $$ frac1(1+x)^2 = sum_n=0^infty (-1)^n(n+1) x^n $$ and write $$ 2int_0^infty fracx^2 e^x(e^x+1)^2dx=\ =2int_0^infty fracx^2 e^-x(e^-x+1)^2dx \ = 2 int_0^infty x^2e^-xsum_n=0^infty (-1)^n (n+1) e^-nx\=2sum_n=0^infty (-1)^n(n+1) int_0^infty x^2 e^-(n+1)xdx\=4sum_n=0^infty frac(-1)^n(n+1)^2.$$ Then we have $$ sum_n=0^infty frac(-1)^n(n+1)^2 = 1-frac12^2 + frac13^2ldots = (1-frac22^2)(1+frac12^2 + frac13^2ldots) = fracpi^212$$



                              Edit
                              Realized this can be simplified somewhat by first doing an integration by parts $$ 2int_0^infty fracx^2 e^x(e^x+1)^2dx = 4int_0^infty fracxe^x+1dx$$ followed by a similar series expansion. Additionally, this solution somewhat 'misses the point' relative to contour integration approaches since that's one of the slicker ways to get $sum_n1/n^2=pi^2/6$ in the first place (and also transformation from the sums to integrals like this are the source of many zeta function identities).






                              share|cite|improve this answer














                              First off, notice the integrand is even, so we have $$ int_-infty^infty fracx^2 e^x(e^x+1)^2dx = 2int_0^infty fracx^2 e^x(e^x+1)^2dx.$$ Then we can expand $$ frac1(1+x)^2 = sum_n=0^infty (-1)^n(n+1) x^n $$ and write $$ 2int_0^infty fracx^2 e^x(e^x+1)^2dx=\ =2int_0^infty fracx^2 e^-x(e^-x+1)^2dx \ = 2 int_0^infty x^2e^-xsum_n=0^infty (-1)^n (n+1) e^-nx\=2sum_n=0^infty (-1)^n(n+1) int_0^infty x^2 e^-(n+1)xdx\=4sum_n=0^infty frac(-1)^n(n+1)^2.$$ Then we have $$ sum_n=0^infty frac(-1)^n(n+1)^2 = 1-frac12^2 + frac13^2ldots = (1-frac22^2)(1+frac12^2 + frac13^2ldots) = fracpi^212$$



                              Edit
                              Realized this can be simplified somewhat by first doing an integration by parts $$ 2int_0^infty fracx^2 e^x(e^x+1)^2dx = 4int_0^infty fracxe^x+1dx$$ followed by a similar series expansion. Additionally, this solution somewhat 'misses the point' relative to contour integration approaches since that's one of the slicker ways to get $sum_n1/n^2=pi^2/6$ in the first place (and also transformation from the sums to integrals like this are the source of many zeta function identities).







                              share|cite|improve this answer














                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited 21 hours ago

























                              answered 22 hours ago









                              spaceisdarkgreen

                              31.1k21552




                              31.1k21552




















                                  up vote
                                  4
                                  down vote













                                  You have
                                  $$
                                  int_-infty^inftyfracx^2 e^x(e^x+1)^2,mathrmdx=
                                  int_-infty^inftyfracx^22(cosh x+1),mathrmdx
                                  $$

                                  So integrate $dfracz^31+cosh z$ around rectangle $pm Rpm2pi i$, we have encircled a simple pole at $pi i$ with residue $6pi^2$. The vertical sides contribution is $to 0$ as $Rtoinfty$ because of cosh in the denominator, and the horizontal contribution
                                  $$
                                  int_-infty^inftyfracx^31+cosh x,mathrmdx+int_infty^-inftyfrac(x+2pi i)^31+underbracecosh(x+2pi i)_=cosh x,mathrmdx
                                  $$

                                  whose imaginary part is
                                  $$
                                  2piint_infty^-inftyfrac3x^2-4pi^21+cosh(x),mathrmdx.
                                  $$

                                  So
                                  $$
                                  3int_infty^-inftyfracx^21+cosh(x),mathrmdx
                                  -4pi^2int_infty^-inftyfrac11+cosh(x),mathrmdx
                                  =6pi^2
                                  $$

                                  i.e.,
                                  beginalign
                                  int_-infty^inftyfracx^22(1+cosh(x)),mathrmdx
                                  &=-pi^2
                                  +frac43pi^2int_-infty^inftyfrac12(1+cosh(x)),mathrmdx
                                  \
                                  &=-pi^2+frac43pi^2=frac13pi^2
                                  endalign

                                  since
                                  $$
                                  int_-infty^inftyfrac12(cosh x+1),mathrmdx=int_-infty^inftyfrac14operatornamesech^2frac x2,mathrmdx=left[frac12tanhfrac x2right]_-infty^infty=1.
                                  $$






                                  share|cite|improve this answer
























                                    up vote
                                    4
                                    down vote













                                    You have
                                    $$
                                    int_-infty^inftyfracx^2 e^x(e^x+1)^2,mathrmdx=
                                    int_-infty^inftyfracx^22(cosh x+1),mathrmdx
                                    $$

                                    So integrate $dfracz^31+cosh z$ around rectangle $pm Rpm2pi i$, we have encircled a simple pole at $pi i$ with residue $6pi^2$. The vertical sides contribution is $to 0$ as $Rtoinfty$ because of cosh in the denominator, and the horizontal contribution
                                    $$
                                    int_-infty^inftyfracx^31+cosh x,mathrmdx+int_infty^-inftyfrac(x+2pi i)^31+underbracecosh(x+2pi i)_=cosh x,mathrmdx
                                    $$

                                    whose imaginary part is
                                    $$
                                    2piint_infty^-inftyfrac3x^2-4pi^21+cosh(x),mathrmdx.
                                    $$

                                    So
                                    $$
                                    3int_infty^-inftyfracx^21+cosh(x),mathrmdx
                                    -4pi^2int_infty^-inftyfrac11+cosh(x),mathrmdx
                                    =6pi^2
                                    $$

                                    i.e.,
                                    beginalign
                                    int_-infty^inftyfracx^22(1+cosh(x)),mathrmdx
                                    &=-pi^2
                                    +frac43pi^2int_-infty^inftyfrac12(1+cosh(x)),mathrmdx
                                    \
                                    &=-pi^2+frac43pi^2=frac13pi^2
                                    endalign

                                    since
                                    $$
                                    int_-infty^inftyfrac12(cosh x+1),mathrmdx=int_-infty^inftyfrac14operatornamesech^2frac x2,mathrmdx=left[frac12tanhfrac x2right]_-infty^infty=1.
                                    $$






                                    share|cite|improve this answer






















                                      up vote
                                      4
                                      down vote










                                      up vote
                                      4
                                      down vote









                                      You have
                                      $$
                                      int_-infty^inftyfracx^2 e^x(e^x+1)^2,mathrmdx=
                                      int_-infty^inftyfracx^22(cosh x+1),mathrmdx
                                      $$

                                      So integrate $dfracz^31+cosh z$ around rectangle $pm Rpm2pi i$, we have encircled a simple pole at $pi i$ with residue $6pi^2$. The vertical sides contribution is $to 0$ as $Rtoinfty$ because of cosh in the denominator, and the horizontal contribution
                                      $$
                                      int_-infty^inftyfracx^31+cosh x,mathrmdx+int_infty^-inftyfrac(x+2pi i)^31+underbracecosh(x+2pi i)_=cosh x,mathrmdx
                                      $$

                                      whose imaginary part is
                                      $$
                                      2piint_infty^-inftyfrac3x^2-4pi^21+cosh(x),mathrmdx.
                                      $$

                                      So
                                      $$
                                      3int_infty^-inftyfracx^21+cosh(x),mathrmdx
                                      -4pi^2int_infty^-inftyfrac11+cosh(x),mathrmdx
                                      =6pi^2
                                      $$

                                      i.e.,
                                      beginalign
                                      int_-infty^inftyfracx^22(1+cosh(x)),mathrmdx
                                      &=-pi^2
                                      +frac43pi^2int_-infty^inftyfrac12(1+cosh(x)),mathrmdx
                                      \
                                      &=-pi^2+frac43pi^2=frac13pi^2
                                      endalign

                                      since
                                      $$
                                      int_-infty^inftyfrac12(cosh x+1),mathrmdx=int_-infty^inftyfrac14operatornamesech^2frac x2,mathrmdx=left[frac12tanhfrac x2right]_-infty^infty=1.
                                      $$






                                      share|cite|improve this answer












                                      You have
                                      $$
                                      int_-infty^inftyfracx^2 e^x(e^x+1)^2,mathrmdx=
                                      int_-infty^inftyfracx^22(cosh x+1),mathrmdx
                                      $$

                                      So integrate $dfracz^31+cosh z$ around rectangle $pm Rpm2pi i$, we have encircled a simple pole at $pi i$ with residue $6pi^2$. The vertical sides contribution is $to 0$ as $Rtoinfty$ because of cosh in the denominator, and the horizontal contribution
                                      $$
                                      int_-infty^inftyfracx^31+cosh x,mathrmdx+int_infty^-inftyfrac(x+2pi i)^31+underbracecosh(x+2pi i)_=cosh x,mathrmdx
                                      $$

                                      whose imaginary part is
                                      $$
                                      2piint_infty^-inftyfrac3x^2-4pi^21+cosh(x),mathrmdx.
                                      $$

                                      So
                                      $$
                                      3int_infty^-inftyfracx^21+cosh(x),mathrmdx
                                      -4pi^2int_infty^-inftyfrac11+cosh(x),mathrmdx
                                      =6pi^2
                                      $$

                                      i.e.,
                                      beginalign
                                      int_-infty^inftyfracx^22(1+cosh(x)),mathrmdx
                                      &=-pi^2
                                      +frac43pi^2int_-infty^inftyfrac12(1+cosh(x)),mathrmdx
                                      \
                                      &=-pi^2+frac43pi^2=frac13pi^2
                                      endalign

                                      since
                                      $$
                                      int_-infty^inftyfrac12(cosh x+1),mathrmdx=int_-infty^inftyfrac14operatornamesech^2frac x2,mathrmdx=left[frac12tanhfrac x2right]_-infty^infty=1.
                                      $$







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered 22 hours ago









                                      user10354138

                                      6,154523




                                      6,154523




















                                          up vote
                                          4
                                          down vote













                                          Substitute $e^x=t$ we get $$I=int_0^infty frac ln^2t dt(1+t)^2$$



                                          Let $$J(a)=int_0^infty frac t^a-1dt(1+t)^2$$



                                          So we need to find $J''(1)$



                                          Notice that $$J(a)=B(a,2-a)=frac Gamma(a)Gamma(2-a)Gamma(2)$$



                                          Where $B(x,y)$ is Standard beta function and $Gamma(x)$ is the Gamma function



                                          Using the properties of Gamma function and Euler's reflection formula we have $$J(a)=Gamma(a) cdot(1-a)Gamma(1-a)=pi frac 1-asin pi a$$



                                          Differentiating twice w.r.t $a$ and taking limit $ato 1$ gives the desired result






                                          share|cite|improve this answer
























                                            up vote
                                            4
                                            down vote













                                            Substitute $e^x=t$ we get $$I=int_0^infty frac ln^2t dt(1+t)^2$$



                                            Let $$J(a)=int_0^infty frac t^a-1dt(1+t)^2$$



                                            So we need to find $J''(1)$



                                            Notice that $$J(a)=B(a,2-a)=frac Gamma(a)Gamma(2-a)Gamma(2)$$



                                            Where $B(x,y)$ is Standard beta function and $Gamma(x)$ is the Gamma function



                                            Using the properties of Gamma function and Euler's reflection formula we have $$J(a)=Gamma(a) cdot(1-a)Gamma(1-a)=pi frac 1-asin pi a$$



                                            Differentiating twice w.r.t $a$ and taking limit $ato 1$ gives the desired result






                                            share|cite|improve this answer






















                                              up vote
                                              4
                                              down vote










                                              up vote
                                              4
                                              down vote









                                              Substitute $e^x=t$ we get $$I=int_0^infty frac ln^2t dt(1+t)^2$$



                                              Let $$J(a)=int_0^infty frac t^a-1dt(1+t)^2$$



                                              So we need to find $J''(1)$



                                              Notice that $$J(a)=B(a,2-a)=frac Gamma(a)Gamma(2-a)Gamma(2)$$



                                              Where $B(x,y)$ is Standard beta function and $Gamma(x)$ is the Gamma function



                                              Using the properties of Gamma function and Euler's reflection formula we have $$J(a)=Gamma(a) cdot(1-a)Gamma(1-a)=pi frac 1-asin pi a$$



                                              Differentiating twice w.r.t $a$ and taking limit $ato 1$ gives the desired result






                                              share|cite|improve this answer












                                              Substitute $e^x=t$ we get $$I=int_0^infty frac ln^2t dt(1+t)^2$$



                                              Let $$J(a)=int_0^infty frac t^a-1dt(1+t)^2$$



                                              So we need to find $J''(1)$



                                              Notice that $$J(a)=B(a,2-a)=frac Gamma(a)Gamma(2-a)Gamma(2)$$



                                              Where $B(x,y)$ is Standard beta function and $Gamma(x)$ is the Gamma function



                                              Using the properties of Gamma function and Euler's reflection formula we have $$J(a)=Gamma(a) cdot(1-a)Gamma(1-a)=pi frac 1-asin pi a$$



                                              Differentiating twice w.r.t $a$ and taking limit $ato 1$ gives the desired result







                                              share|cite|improve this answer












                                              share|cite|improve this answer



                                              share|cite|improve this answer










                                              answered 22 hours ago









                                              Digamma

                                              5,8001437




                                              5,8001437




















                                                  up vote
                                                  1
                                                  down vote













                                                  Here we use Feynman's Trick to facilitate analysis. Proceeding, we have



                                                  $$beginalign
                                                  I&=int_-infty^infty fracx^2e^x(e^x+1)^2,dx\\
                                                  &=2int_0^infty fracx^2e^x(e^x+1)^2,dx\\
                                                  &=-2left.left(fracddyint_0^infty fracx^2ye^x+1,dxright)right|_y=1\\
                                                  &=-2left.left(fracddyint_0^infty fracx^2e^-xe^-x+y,dxright)right|_y=1\\
                                                  &=-2left.fracddyleft(frac1yint_0^infty fracx^2e^-xe^-x/y+1,dxright)right|_y=1\\
                                                  &=-2left.fracddyleft(sum_n=0^infty frac(-1)^ny^n+1int_0^infty x^2e^-(n+1)x,dxright)right|_y=1\\
                                                  &=-4left.fracddyleft(sum_n=0^infty frac(-1)^ny^n+1(n+1)^3right)right|_y=1\\
                                                  &=4sum_n=1^infty frac(-1)^n+1n^2\\
                                                  &=4fracpi^212\\
                                                  &=fracpi^23
                                                  endalign$$






                                                  share|cite|improve this answer
























                                                    up vote
                                                    1
                                                    down vote













                                                    Here we use Feynman's Trick to facilitate analysis. Proceeding, we have



                                                    $$beginalign
                                                    I&=int_-infty^infty fracx^2e^x(e^x+1)^2,dx\\
                                                    &=2int_0^infty fracx^2e^x(e^x+1)^2,dx\\
                                                    &=-2left.left(fracddyint_0^infty fracx^2ye^x+1,dxright)right|_y=1\\
                                                    &=-2left.left(fracddyint_0^infty fracx^2e^-xe^-x+y,dxright)right|_y=1\\
                                                    &=-2left.fracddyleft(frac1yint_0^infty fracx^2e^-xe^-x/y+1,dxright)right|_y=1\\
                                                    &=-2left.fracddyleft(sum_n=0^infty frac(-1)^ny^n+1int_0^infty x^2e^-(n+1)x,dxright)right|_y=1\\
                                                    &=-4left.fracddyleft(sum_n=0^infty frac(-1)^ny^n+1(n+1)^3right)right|_y=1\\
                                                    &=4sum_n=1^infty frac(-1)^n+1n^2\\
                                                    &=4fracpi^212\\
                                                    &=fracpi^23
                                                    endalign$$






                                                    share|cite|improve this answer






















                                                      up vote
                                                      1
                                                      down vote










                                                      up vote
                                                      1
                                                      down vote









                                                      Here we use Feynman's Trick to facilitate analysis. Proceeding, we have



                                                      $$beginalign
                                                      I&=int_-infty^infty fracx^2e^x(e^x+1)^2,dx\\
                                                      &=2int_0^infty fracx^2e^x(e^x+1)^2,dx\\
                                                      &=-2left.left(fracddyint_0^infty fracx^2ye^x+1,dxright)right|_y=1\\
                                                      &=-2left.left(fracddyint_0^infty fracx^2e^-xe^-x+y,dxright)right|_y=1\\
                                                      &=-2left.fracddyleft(frac1yint_0^infty fracx^2e^-xe^-x/y+1,dxright)right|_y=1\\
                                                      &=-2left.fracddyleft(sum_n=0^infty frac(-1)^ny^n+1int_0^infty x^2e^-(n+1)x,dxright)right|_y=1\\
                                                      &=-4left.fracddyleft(sum_n=0^infty frac(-1)^ny^n+1(n+1)^3right)right|_y=1\\
                                                      &=4sum_n=1^infty frac(-1)^n+1n^2\\
                                                      &=4fracpi^212\\
                                                      &=fracpi^23
                                                      endalign$$






                                                      share|cite|improve this answer












                                                      Here we use Feynman's Trick to facilitate analysis. Proceeding, we have



                                                      $$beginalign
                                                      I&=int_-infty^infty fracx^2e^x(e^x+1)^2,dx\\
                                                      &=2int_0^infty fracx^2e^x(e^x+1)^2,dx\\
                                                      &=-2left.left(fracddyint_0^infty fracx^2ye^x+1,dxright)right|_y=1\\
                                                      &=-2left.left(fracddyint_0^infty fracx^2e^-xe^-x+y,dxright)right|_y=1\\
                                                      &=-2left.fracddyleft(frac1yint_0^infty fracx^2e^-xe^-x/y+1,dxright)right|_y=1\\
                                                      &=-2left.fracddyleft(sum_n=0^infty frac(-1)^ny^n+1int_0^infty x^2e^-(n+1)x,dxright)right|_y=1\\
                                                      &=-4left.fracddyleft(sum_n=0^infty frac(-1)^ny^n+1(n+1)^3right)right|_y=1\\
                                                      &=4sum_n=1^infty frac(-1)^n+1n^2\\
                                                      &=4fracpi^212\\
                                                      &=fracpi^23
                                                      endalign$$







                                                      share|cite|improve this answer












                                                      share|cite|improve this answer



                                                      share|cite|improve this answer










                                                      answered 21 hours ago









                                                      Mark Viola

                                                      128k1273170




                                                      128k1273170




















                                                          up vote
                                                          0
                                                          down vote













                                                          my first thought was trying substitution:
                                                          $$I=int_-infty^inftyfracx^2e^x(e^x+1)^2dx$$
                                                          $u=e^x+1,,dx=fracdue^x$
                                                          $$I=int_1^inftyfracx^2u^2du=int_1^inftyfracln^2(u-1)u^2du$$
                                                          if we now let:
                                                          $$I(a)=int_1^inftyfracln(au-1)u^2du$$
                                                          then:
                                                          $$I''(a)=int_1^inftyln(au-1)du$$
                                                          $v=au-1,,du=fracdva$
                                                          $$I''(a)=frac1aint_a^inftyln(v)dv$$
                                                          although this leaves us with a divergent integral, which does not help.



                                                          Another approach:
                                                          $$I=int_-infty^inftyfracx^2e^x(e^x+1)^2dx=int_-infty^inftyfracx^2[(e^x+1)-1](e^x+1)^2dx=int_-infty^inftyfracx^2e^x+1dx-int_-infty^inftyfracx^2(e^x+1)^2dx$$






                                                          share|cite|improve this answer
























                                                            up vote
                                                            0
                                                            down vote













                                                            my first thought was trying substitution:
                                                            $$I=int_-infty^inftyfracx^2e^x(e^x+1)^2dx$$
                                                            $u=e^x+1,,dx=fracdue^x$
                                                            $$I=int_1^inftyfracx^2u^2du=int_1^inftyfracln^2(u-1)u^2du$$
                                                            if we now let:
                                                            $$I(a)=int_1^inftyfracln(au-1)u^2du$$
                                                            then:
                                                            $$I''(a)=int_1^inftyln(au-1)du$$
                                                            $v=au-1,,du=fracdva$
                                                            $$I''(a)=frac1aint_a^inftyln(v)dv$$
                                                            although this leaves us with a divergent integral, which does not help.



                                                            Another approach:
                                                            $$I=int_-infty^inftyfracx^2e^x(e^x+1)^2dx=int_-infty^inftyfracx^2[(e^x+1)-1](e^x+1)^2dx=int_-infty^inftyfracx^2e^x+1dx-int_-infty^inftyfracx^2(e^x+1)^2dx$$






                                                            share|cite|improve this answer






















                                                              up vote
                                                              0
                                                              down vote










                                                              up vote
                                                              0
                                                              down vote









                                                              my first thought was trying substitution:
                                                              $$I=int_-infty^inftyfracx^2e^x(e^x+1)^2dx$$
                                                              $u=e^x+1,,dx=fracdue^x$
                                                              $$I=int_1^inftyfracx^2u^2du=int_1^inftyfracln^2(u-1)u^2du$$
                                                              if we now let:
                                                              $$I(a)=int_1^inftyfracln(au-1)u^2du$$
                                                              then:
                                                              $$I''(a)=int_1^inftyln(au-1)du$$
                                                              $v=au-1,,du=fracdva$
                                                              $$I''(a)=frac1aint_a^inftyln(v)dv$$
                                                              although this leaves us with a divergent integral, which does not help.



                                                              Another approach:
                                                              $$I=int_-infty^inftyfracx^2e^x(e^x+1)^2dx=int_-infty^inftyfracx^2[(e^x+1)-1](e^x+1)^2dx=int_-infty^inftyfracx^2e^x+1dx-int_-infty^inftyfracx^2(e^x+1)^2dx$$






                                                              share|cite|improve this answer












                                                              my first thought was trying substitution:
                                                              $$I=int_-infty^inftyfracx^2e^x(e^x+1)^2dx$$
                                                              $u=e^x+1,,dx=fracdue^x$
                                                              $$I=int_1^inftyfracx^2u^2du=int_1^inftyfracln^2(u-1)u^2du$$
                                                              if we now let:
                                                              $$I(a)=int_1^inftyfracln(au-1)u^2du$$
                                                              then:
                                                              $$I''(a)=int_1^inftyln(au-1)du$$
                                                              $v=au-1,,du=fracdva$
                                                              $$I''(a)=frac1aint_a^inftyln(v)dv$$
                                                              although this leaves us with a divergent integral, which does not help.



                                                              Another approach:
                                                              $$I=int_-infty^inftyfracx^2e^x(e^x+1)^2dx=int_-infty^inftyfracx^2[(e^x+1)-1](e^x+1)^2dx=int_-infty^inftyfracx^2e^x+1dx-int_-infty^inftyfracx^2(e^x+1)^2dx$$







                                                              share|cite|improve this answer












                                                              share|cite|improve this answer



                                                              share|cite|improve this answer










                                                              answered 22 hours ago









                                                              Henry Lee

                                                              1,567117




                                                              1,567117




















                                                                  up vote
                                                                  0
                                                                  down vote













                                                                  The integral you are interested in can be rewritten in the form: $$int_-infty^inftyfracx^22 cosh(x)+2 dx$$



                                                                  Several techniques for solving integrals similar to this can be found at:



                                                                  Improper Integral of $x^2/cosh(x)$






                                                                  share|cite|improve this answer








                                                                  New contributor




                                                                  Nebu is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                                                  Check out our Code of Conduct.





















                                                                    up vote
                                                                    0
                                                                    down vote













                                                                    The integral you are interested in can be rewritten in the form: $$int_-infty^inftyfracx^22 cosh(x)+2 dx$$



                                                                    Several techniques for solving integrals similar to this can be found at:



                                                                    Improper Integral of $x^2/cosh(x)$






                                                                    share|cite|improve this answer








                                                                    New contributor




                                                                    Nebu is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                                                    Check out our Code of Conduct.



















                                                                      up vote
                                                                      0
                                                                      down vote










                                                                      up vote
                                                                      0
                                                                      down vote









                                                                      The integral you are interested in can be rewritten in the form: $$int_-infty^inftyfracx^22 cosh(x)+2 dx$$



                                                                      Several techniques for solving integrals similar to this can be found at:



                                                                      Improper Integral of $x^2/cosh(x)$






                                                                      share|cite|improve this answer








                                                                      New contributor




                                                                      Nebu is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                                                      Check out our Code of Conduct.









                                                                      The integral you are interested in can be rewritten in the form: $$int_-infty^inftyfracx^22 cosh(x)+2 dx$$



                                                                      Several techniques for solving integrals similar to this can be found at:



                                                                      Improper Integral of $x^2/cosh(x)$







                                                                      share|cite|improve this answer








                                                                      New contributor




                                                                      Nebu is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                                                      Check out our Code of Conduct.









                                                                      share|cite|improve this answer



                                                                      share|cite|improve this answer






                                                                      New contributor




                                                                      Nebu is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                                                      Check out our Code of Conduct.









                                                                      answered 22 hours ago









                                                                      Nebu

                                                                      263




                                                                      263




                                                                      New contributor




                                                                      Nebu is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                                                      Check out our Code of Conduct.





                                                                      New contributor





                                                                      Nebu is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                                                      Check out our Code of Conduct.






                                                                      Nebu is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                                                      Check out our Code of Conduct.




















                                                                          up vote
                                                                          0
                                                                          down vote













                                                                          One of the standard solutions for evaluating difficult integrals is to transform the integrand into an infinite sequence and then integrating termwise. Indeed, if we start off with the geometric sum$$sumlimits_ngeq0x^n=frac 11-x$$multiply both sides by $x$ and differentiating with respect to $x$, it's easy to see that$$sumlimits_ngeq0(n+1)x^n=frac 1(1-x)^2$$Replace $x$ with $-e^-x$ in the problem and calling the integral $mathfrakI$, the problem transforms into$$beginalign*mathfrakI & =2sumlimits_ngeq0(-1)^n(n+1)intlimits_0^inftymathrm dx,x^2 e^-(n+1)xendalign*$$The remaining integral can be evaluated using integration by parts on $u=x^2$ to get$$mathfrak I=4sumlimits_ngeq0frac (-1)^n(n+1)^2=4sumlimits_ngeq1frac (-1)^n-1n^2$$The inner sum is equal to $pi^2/12$ and is due to the identity$$eta(s)=(1-2^1-s)zeta(s)$$Where$$eta(s)=sumlimits_ngeq1frac (-1)^n-1n^s$$$$zeta(s)=sumlimits_ngeq1frac 1n^s$$Since $zeta(2)=pi^2/6$, the result follows immediately$$intlimits_-infty^inftymathrm dx,frac x^2e^x(1+e^x)^2colorblue=frac pi^23$$






                                                                          share|cite|improve this answer
























                                                                            up vote
                                                                            0
                                                                            down vote













                                                                            One of the standard solutions for evaluating difficult integrals is to transform the integrand into an infinite sequence and then integrating termwise. Indeed, if we start off with the geometric sum$$sumlimits_ngeq0x^n=frac 11-x$$multiply both sides by $x$ and differentiating with respect to $x$, it's easy to see that$$sumlimits_ngeq0(n+1)x^n=frac 1(1-x)^2$$Replace $x$ with $-e^-x$ in the problem and calling the integral $mathfrakI$, the problem transforms into$$beginalign*mathfrakI & =2sumlimits_ngeq0(-1)^n(n+1)intlimits_0^inftymathrm dx,x^2 e^-(n+1)xendalign*$$The remaining integral can be evaluated using integration by parts on $u=x^2$ to get$$mathfrak I=4sumlimits_ngeq0frac (-1)^n(n+1)^2=4sumlimits_ngeq1frac (-1)^n-1n^2$$The inner sum is equal to $pi^2/12$ and is due to the identity$$eta(s)=(1-2^1-s)zeta(s)$$Where$$eta(s)=sumlimits_ngeq1frac (-1)^n-1n^s$$$$zeta(s)=sumlimits_ngeq1frac 1n^s$$Since $zeta(2)=pi^2/6$, the result follows immediately$$intlimits_-infty^inftymathrm dx,frac x^2e^x(1+e^x)^2colorblue=frac pi^23$$






                                                                            share|cite|improve this answer






















                                                                              up vote
                                                                              0
                                                                              down vote










                                                                              up vote
                                                                              0
                                                                              down vote









                                                                              One of the standard solutions for evaluating difficult integrals is to transform the integrand into an infinite sequence and then integrating termwise. Indeed, if we start off with the geometric sum$$sumlimits_ngeq0x^n=frac 11-x$$multiply both sides by $x$ and differentiating with respect to $x$, it's easy to see that$$sumlimits_ngeq0(n+1)x^n=frac 1(1-x)^2$$Replace $x$ with $-e^-x$ in the problem and calling the integral $mathfrakI$, the problem transforms into$$beginalign*mathfrakI & =2sumlimits_ngeq0(-1)^n(n+1)intlimits_0^inftymathrm dx,x^2 e^-(n+1)xendalign*$$The remaining integral can be evaluated using integration by parts on $u=x^2$ to get$$mathfrak I=4sumlimits_ngeq0frac (-1)^n(n+1)^2=4sumlimits_ngeq1frac (-1)^n-1n^2$$The inner sum is equal to $pi^2/12$ and is due to the identity$$eta(s)=(1-2^1-s)zeta(s)$$Where$$eta(s)=sumlimits_ngeq1frac (-1)^n-1n^s$$$$zeta(s)=sumlimits_ngeq1frac 1n^s$$Since $zeta(2)=pi^2/6$, the result follows immediately$$intlimits_-infty^inftymathrm dx,frac x^2e^x(1+e^x)^2colorblue=frac pi^23$$






                                                                              share|cite|improve this answer












                                                                              One of the standard solutions for evaluating difficult integrals is to transform the integrand into an infinite sequence and then integrating termwise. Indeed, if we start off with the geometric sum$$sumlimits_ngeq0x^n=frac 11-x$$multiply both sides by $x$ and differentiating with respect to $x$, it's easy to see that$$sumlimits_ngeq0(n+1)x^n=frac 1(1-x)^2$$Replace $x$ with $-e^-x$ in the problem and calling the integral $mathfrakI$, the problem transforms into$$beginalign*mathfrakI & =2sumlimits_ngeq0(-1)^n(n+1)intlimits_0^inftymathrm dx,x^2 e^-(n+1)xendalign*$$The remaining integral can be evaluated using integration by parts on $u=x^2$ to get$$mathfrak I=4sumlimits_ngeq0frac (-1)^n(n+1)^2=4sumlimits_ngeq1frac (-1)^n-1n^2$$The inner sum is equal to $pi^2/12$ and is due to the identity$$eta(s)=(1-2^1-s)zeta(s)$$Where$$eta(s)=sumlimits_ngeq1frac (-1)^n-1n^s$$$$zeta(s)=sumlimits_ngeq1frac 1n^s$$Since $zeta(2)=pi^2/6$, the result follows immediately$$intlimits_-infty^inftymathrm dx,frac x^2e^x(1+e^x)^2colorblue=frac pi^23$$







                                                                              share|cite|improve this answer












                                                                              share|cite|improve this answer



                                                                              share|cite|improve this answer










                                                                              answered 21 hours ago









                                                                              Frank W.

                                                                              2,6111316




                                                                              2,6111316




















                                                                                  up vote
                                                                                  0
                                                                                  down vote













                                                                                  We could even compute the antiderivative since
                                                                                  $$I=intfracx^2 e^x(e^x+1)^2,dx=x left(frace^x xe^x+1-2 log left(e^x+1right)right)-2 textLi_2left(-e^xright)$$ making
                                                                                  $$J=int_0^pfracx^2 e^x(e^x+1)^2,dx=frace^p p^2e^p+1-2 textLi_2left(-e^pright)-2 p log
                                                                                  left(e^p+1right)-fracpi ^26$$
                                                                                  Expanding as series for large values of $p$
                                                                                  $$J=left(2-frac1e^p+1right) p^2+frac12 e^-2 p left(1-4
                                                                                  e^pright)+fracpi ^26-2 p log left(e^p+1right)+cdots$$
                                                                                  which shows the limit and which is a quite good approximation even for small values of $p$
                                                                                  $$left(
                                                                                  beginarrayccc
                                                                                  p & textapproximation & textexact \
                                                                                  1 & 0.08137802971721 & 0.07217327763488 \
                                                                                  2 & 0.39889758755901 & 0.39838536515902 \
                                                                                  3 & 0.82824233816028 & 0.82821565813003 \
                                                                                  4 & 1.17549173764877 & 1.17549038617232 \
                                                                                  5 & 1.39700611481663 & 1.39700604709488 \
                                                                                  6 & 1.52125697930945 & 1.52125697592972 \
                                                                                  7 & 1.58570867980301 & 1.58570867963459 \
                                                                                  8 & 1.61743428754382 & 1.61743428753543 \
                                                                                  9 & 1.63247105478514 & 1.63247105478472 \
                                                                                  10 & 1.63939550316470 & 1.63939550316468
                                                                                  endarray
                                                                                  right)$$






                                                                                  share|cite|improve this answer
























                                                                                    up vote
                                                                                    0
                                                                                    down vote













                                                                                    We could even compute the antiderivative since
                                                                                    $$I=intfracx^2 e^x(e^x+1)^2,dx=x left(frace^x xe^x+1-2 log left(e^x+1right)right)-2 textLi_2left(-e^xright)$$ making
                                                                                    $$J=int_0^pfracx^2 e^x(e^x+1)^2,dx=frace^p p^2e^p+1-2 textLi_2left(-e^pright)-2 p log
                                                                                    left(e^p+1right)-fracpi ^26$$
                                                                                    Expanding as series for large values of $p$
                                                                                    $$J=left(2-frac1e^p+1right) p^2+frac12 e^-2 p left(1-4
                                                                                    e^pright)+fracpi ^26-2 p log left(e^p+1right)+cdots$$
                                                                                    which shows the limit and which is a quite good approximation even for small values of $p$
                                                                                    $$left(
                                                                                    beginarrayccc
                                                                                    p & textapproximation & textexact \
                                                                                    1 & 0.08137802971721 & 0.07217327763488 \
                                                                                    2 & 0.39889758755901 & 0.39838536515902 \
                                                                                    3 & 0.82824233816028 & 0.82821565813003 \
                                                                                    4 & 1.17549173764877 & 1.17549038617232 \
                                                                                    5 & 1.39700611481663 & 1.39700604709488 \
                                                                                    6 & 1.52125697930945 & 1.52125697592972 \
                                                                                    7 & 1.58570867980301 & 1.58570867963459 \
                                                                                    8 & 1.61743428754382 & 1.61743428753543 \
                                                                                    9 & 1.63247105478514 & 1.63247105478472 \
                                                                                    10 & 1.63939550316470 & 1.63939550316468
                                                                                    endarray
                                                                                    right)$$






                                                                                    share|cite|improve this answer






















                                                                                      up vote
                                                                                      0
                                                                                      down vote










                                                                                      up vote
                                                                                      0
                                                                                      down vote









                                                                                      We could even compute the antiderivative since
                                                                                      $$I=intfracx^2 e^x(e^x+1)^2,dx=x left(frace^x xe^x+1-2 log left(e^x+1right)right)-2 textLi_2left(-e^xright)$$ making
                                                                                      $$J=int_0^pfracx^2 e^x(e^x+1)^2,dx=frace^p p^2e^p+1-2 textLi_2left(-e^pright)-2 p log
                                                                                      left(e^p+1right)-fracpi ^26$$
                                                                                      Expanding as series for large values of $p$
                                                                                      $$J=left(2-frac1e^p+1right) p^2+frac12 e^-2 p left(1-4
                                                                                      e^pright)+fracpi ^26-2 p log left(e^p+1right)+cdots$$
                                                                                      which shows the limit and which is a quite good approximation even for small values of $p$
                                                                                      $$left(
                                                                                      beginarrayccc
                                                                                      p & textapproximation & textexact \
                                                                                      1 & 0.08137802971721 & 0.07217327763488 \
                                                                                      2 & 0.39889758755901 & 0.39838536515902 \
                                                                                      3 & 0.82824233816028 & 0.82821565813003 \
                                                                                      4 & 1.17549173764877 & 1.17549038617232 \
                                                                                      5 & 1.39700611481663 & 1.39700604709488 \
                                                                                      6 & 1.52125697930945 & 1.52125697592972 \
                                                                                      7 & 1.58570867980301 & 1.58570867963459 \
                                                                                      8 & 1.61743428754382 & 1.61743428753543 \
                                                                                      9 & 1.63247105478514 & 1.63247105478472 \
                                                                                      10 & 1.63939550316470 & 1.63939550316468
                                                                                      endarray
                                                                                      right)$$






                                                                                      share|cite|improve this answer












                                                                                      We could even compute the antiderivative since
                                                                                      $$I=intfracx^2 e^x(e^x+1)^2,dx=x left(frace^x xe^x+1-2 log left(e^x+1right)right)-2 textLi_2left(-e^xright)$$ making
                                                                                      $$J=int_0^pfracx^2 e^x(e^x+1)^2,dx=frace^p p^2e^p+1-2 textLi_2left(-e^pright)-2 p log
                                                                                      left(e^p+1right)-fracpi ^26$$
                                                                                      Expanding as series for large values of $p$
                                                                                      $$J=left(2-frac1e^p+1right) p^2+frac12 e^-2 p left(1-4
                                                                                      e^pright)+fracpi ^26-2 p log left(e^p+1right)+cdots$$
                                                                                      which shows the limit and which is a quite good approximation even for small values of $p$
                                                                                      $$left(
                                                                                      beginarrayccc
                                                                                      p & textapproximation & textexact \
                                                                                      1 & 0.08137802971721 & 0.07217327763488 \
                                                                                      2 & 0.39889758755901 & 0.39838536515902 \
                                                                                      3 & 0.82824233816028 & 0.82821565813003 \
                                                                                      4 & 1.17549173764877 & 1.17549038617232 \
                                                                                      5 & 1.39700611481663 & 1.39700604709488 \
                                                                                      6 & 1.52125697930945 & 1.52125697592972 \
                                                                                      7 & 1.58570867980301 & 1.58570867963459 \
                                                                                      8 & 1.61743428754382 & 1.61743428753543 \
                                                                                      9 & 1.63247105478514 & 1.63247105478472 \
                                                                                      10 & 1.63939550316470 & 1.63939550316468
                                                                                      endarray
                                                                                      right)$$







                                                                                      share|cite|improve this answer












                                                                                      share|cite|improve this answer



                                                                                      share|cite|improve this answer










                                                                                      answered 20 hours ago









                                                                                      Claude Leibovici

                                                                                      116k1155131




                                                                                      116k1155131



























                                                                                           

                                                                                          draft saved


                                                                                          draft discarded















































                                                                                           


                                                                                          draft saved


                                                                                          draft discarded














                                                                                          StackExchange.ready(
                                                                                          function ()
                                                                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996201%2fhow-to-evaluate-int-infty-inftydx-fracx2-exex12%23new-answer', 'question_page');

                                                                                          );

                                                                                          Post as a guest













































































                                                                                          Popular posts from this blog

                                                                                          How to check contact read email or not when send email to Individual?

                                                                                          Displaying single band from multi-band raster using QGIS

                                                                                          How many registers does an x86_64 CPU actually have?