Sorting nlog(sqrt(n))

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












A researcher claimed that she discovered a comparison-based sorting algorithm that runs in $O(nlog(sqrtn))$. Given the existence of an $Omega(nlog(n))$ lowerbound for sorting, how can this be possible?



Hint: It is possible. Don't waste time trying to disprove it. Just show why it is possible.










share|cite|improve this question









New contributor




confucius_did_shrooms is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.















  • 1




    $n , logsqrtn = frac12n , log(n)= Omega(n ,logn)$. There's only a constant factor difference.
    – Gokul
    3 hours ago















up vote
1
down vote

favorite












A researcher claimed that she discovered a comparison-based sorting algorithm that runs in $O(nlog(sqrtn))$. Given the existence of an $Omega(nlog(n))$ lowerbound for sorting, how can this be possible?



Hint: It is possible. Don't waste time trying to disprove it. Just show why it is possible.










share|cite|improve this question









New contributor




confucius_did_shrooms is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.















  • 1




    $n , logsqrtn = frac12n , log(n)= Omega(n ,logn)$. There's only a constant factor difference.
    – Gokul
    3 hours ago













up vote
1
down vote

favorite









up vote
1
down vote

favorite











A researcher claimed that she discovered a comparison-based sorting algorithm that runs in $O(nlog(sqrtn))$. Given the existence of an $Omega(nlog(n))$ lowerbound for sorting, how can this be possible?



Hint: It is possible. Don't waste time trying to disprove it. Just show why it is possible.










share|cite|improve this question









New contributor




confucius_did_shrooms is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











A researcher claimed that she discovered a comparison-based sorting algorithm that runs in $O(nlog(sqrtn))$. Given the existence of an $Omega(nlog(n))$ lowerbound for sorting, how can this be possible?



Hint: It is possible. Don't waste time trying to disprove it. Just show why it is possible.







algorithms






share|cite|improve this question









New contributor




confucius_did_shrooms is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




confucius_did_shrooms is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 3 hours ago









Thinh D. Nguyen

3,45111468




3,45111468






New contributor




confucius_did_shrooms is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 3 hours ago









confucius_did_shrooms

61




61




New contributor




confucius_did_shrooms is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





confucius_did_shrooms is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






confucius_did_shrooms is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 1




    $n , logsqrtn = frac12n , log(n)= Omega(n ,logn)$. There's only a constant factor difference.
    – Gokul
    3 hours ago













  • 1




    $n , logsqrtn = frac12n , log(n)= Omega(n ,logn)$. There's only a constant factor difference.
    – Gokul
    3 hours ago








1




1




$n , logsqrtn = frac12n , log(n)= Omega(n ,logn)$. There's only a constant factor difference.
– Gokul
3 hours ago





$n , logsqrtn = frac12n , log(n)= Omega(n ,logn)$. There's only a constant factor difference.
– Gokul
3 hours ago











1 Answer
1






active

oldest

votes

















up vote
3
down vote













As a set of functions $mathbbNlongrightarrowmathbbN$, $O(nlog(sqrtn))=O(nlog(n))$.






share|cite|improve this answer




















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "419"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: false,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    confucius_did_shrooms is a new contributor. Be nice, and check out our Code of Conduct.









     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f99307%2fsorting-nlogsqrtn%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    3
    down vote













    As a set of functions $mathbbNlongrightarrowmathbbN$, $O(nlog(sqrtn))=O(nlog(n))$.






    share|cite|improve this answer
























      up vote
      3
      down vote













      As a set of functions $mathbbNlongrightarrowmathbbN$, $O(nlog(sqrtn))=O(nlog(n))$.






      share|cite|improve this answer






















        up vote
        3
        down vote










        up vote
        3
        down vote









        As a set of functions $mathbbNlongrightarrowmathbbN$, $O(nlog(sqrtn))=O(nlog(n))$.






        share|cite|improve this answer












        As a set of functions $mathbbNlongrightarrowmathbbN$, $O(nlog(sqrtn))=O(nlog(n))$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 3 hours ago









        Thinh D. Nguyen

        3,45111468




        3,45111468




















            confucius_did_shrooms is a new contributor. Be nice, and check out our Code of Conduct.









             

            draft saved


            draft discarded


















            confucius_did_shrooms is a new contributor. Be nice, and check out our Code of Conduct.












            confucius_did_shrooms is a new contributor. Be nice, and check out our Code of Conduct.











            confucius_did_shrooms is a new contributor. Be nice, and check out our Code of Conduct.













             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f99307%2fsorting-nlogsqrtn%23new-answer', 'question_page');

            );

            Post as a guest













































































            Popular posts from this blog

            How to check contact read email or not when send email to Individual?

            Christian Cage

            How to properly install USB display driver for Fresco Logic FL2000DX on Ubuntu?