First order non linear ODE with Bernoulli
Clash Royale CLAN TAG#URR8PPP
up vote
5
down vote
favorite
I have a problem with this equation: $ y'(x)-xy(x)=-xy^4(x) $ with initial condition $ y(x_0)=y_0$.
I'm arrived to prove that $ y_0= (Ce^-frac32x_0^2+1)^-3 $ but now i can't move on. Moreover, WolframAlpha's solution is next to impossibleâ¦
Thanks for any help!
differential-equations
add a comment |Â
up vote
5
down vote
favorite
I have a problem with this equation: $ y'(x)-xy(x)=-xy^4(x) $ with initial condition $ y(x_0)=y_0$.
I'm arrived to prove that $ y_0= (Ce^-frac32x_0^2+1)^-3 $ but now i can't move on. Moreover, WolframAlpha's solution is next to impossibleâ¦
Thanks for any help!
differential-equations
You may set $z=y^-3$.
â dmtri
Sep 22 at 14:13
Do you mean you cannot solve for $C$ ?
â dmtri
Sep 22 at 14:13
it's exponent $-1/3$ not $-3$ since we have that$$y(x)=frac 1 (Ke^-3x^2/2+1)^1/3$$
â Isham
Sep 22 at 14:14
add a comment |Â
up vote
5
down vote
favorite
up vote
5
down vote
favorite
I have a problem with this equation: $ y'(x)-xy(x)=-xy^4(x) $ with initial condition $ y(x_0)=y_0$.
I'm arrived to prove that $ y_0= (Ce^-frac32x_0^2+1)^-3 $ but now i can't move on. Moreover, WolframAlpha's solution is next to impossibleâ¦
Thanks for any help!
differential-equations
I have a problem with this equation: $ y'(x)-xy(x)=-xy^4(x) $ with initial condition $ y(x_0)=y_0$.
I'm arrived to prove that $ y_0= (Ce^-frac32x_0^2+1)^-3 $ but now i can't move on. Moreover, WolframAlpha's solution is next to impossibleâ¦
Thanks for any help!
differential-equations
differential-equations
edited Sep 22 at 13:57
Harry49
5,2012828
5,2012828
asked Sep 22 at 13:48
Marco Pittella
897
897
You may set $z=y^-3$.
â dmtri
Sep 22 at 14:13
Do you mean you cannot solve for $C$ ?
â dmtri
Sep 22 at 14:13
it's exponent $-1/3$ not $-3$ since we have that$$y(x)=frac 1 (Ke^-3x^2/2+1)^1/3$$
â Isham
Sep 22 at 14:14
add a comment |Â
You may set $z=y^-3$.
â dmtri
Sep 22 at 14:13
Do you mean you cannot solve for $C$ ?
â dmtri
Sep 22 at 14:13
it's exponent $-1/3$ not $-3$ since we have that$$y(x)=frac 1 (Ke^-3x^2/2+1)^1/3$$
â Isham
Sep 22 at 14:14
You may set $z=y^-3$.
â dmtri
Sep 22 at 14:13
You may set $z=y^-3$.
â dmtri
Sep 22 at 14:13
Do you mean you cannot solve for $C$ ?
â dmtri
Sep 22 at 14:13
Do you mean you cannot solve for $C$ ?
â dmtri
Sep 22 at 14:13
it's exponent $-1/3$ not $-3$ since we have that$$y(x)=frac 1 (Ke^-3x^2/2+1)^1/3$$
â Isham
Sep 22 at 14:14
it's exponent $-1/3$ not $-3$ since we have that$$y(x)=frac 1 (Ke^-3x^2/2+1)^1/3$$
â Isham
Sep 22 at 14:14
add a comment |Â
5 Answers
5
active
oldest
votes
up vote
2
down vote
Hint: Write this as $$fracy'(x)y(x)-y(x)^4=x$$
add a comment |Â
up vote
1
down vote
Let us solve the Bernoulli differential equation $$y'(x)-xy(x)=-xy(x)^4$$ with initial condition $y (x_0)=y_0$. Dividing by $y^4$ and setting $u=y^-3$, we have the linear ODE
$$
frac13 u'(x)+xu(x) = x
$$
with initial condition $u (x_0)=y_0^-3$. The solution obtained by integrating factor reads
beginaligned
u(x) &= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + 3 int_x_0^x t e^3t^2/2 ,text d t right) \
&= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + e^3x^2/2 - e^3x_0^2/2 right) ,
endaligned
from which one deduces $y=u^-1/3$.
add a comment |Â
up vote
0
down vote
Substitute $z=1/y^3$
$$z'+3xz=3x$$
Tis equation is separable
$$z'=3x(1-z)$$
$$int frac dz1-z=frac 32x^2+C$$
$$-ln (z-1)=frac 32x^2+C$$
$$implies y^3(x)=frac 1 Ke^-3x^2/2+1$$
Therefore
$$y_0^3=frac 1 Ke^-3x_0^2/2+1$$
$$Ke^-3x_0^2/2=frac 1 y_0^3-1$$
$$K=left (frac 1 y_0^3-1 right)e^3x_0^2/2$$
So the final result is $y=frac1[(frac1y_0^3-1)e^-frac32x^2]e^-frac32x^2+1$?
â Marco Pittella
Sep 22 at 14:43
@marco dont forget the exponent $1/3$ and you can also write $e^-3/2(x^2+x_0^2)$
â Isham
Sep 22 at 15:11
add a comment |Â
up vote
0
down vote
We have $$C=e^frac3x_0^22(y_0^-1/3-1)$$
add a comment |Â
up vote
0
down vote
To reach a better understanding of my problem, i will write all the passages.
$fracy^'y^4=fracxyy^3-xrightarrow fracy^'y^4=xy^-3-x$
Now i put $z=y^-3rightarrow z^'=-3xz+3x$.
$y_0(x)=Ce^A(x)rightarrow A(x)=int -3xdx=-frac32x^2rightarrow y_0(x)=Ce^-frac32x^2$
$y_p(x)=e^A(x)B(x)rightarrow B(x)=int -3xcdot e^A(x)dx=int -3xcdot e^frac32x^2dx$
Now i put $frac32x^2=trightarrow dt=3xdxrightarrow dx=fracdx3x$
Since $int -3xe^tfracdt3x=-e^frac32x^2rightarrow y_px=1$, i obtain $y(x)=Ce^-frac32x^2+1$. But since $y^-3=z$...the result that i wrote.
the notation is a bit confusing...Dont write y when you are solving for z... Once you made the substitution you have an equation with a function z and a variable x. Apart from this it looks correct to me
â Isham
Sep 22 at 15:48
add a comment |Â
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
Hint: Write this as $$fracy'(x)y(x)-y(x)^4=x$$
add a comment |Â
up vote
2
down vote
Hint: Write this as $$fracy'(x)y(x)-y(x)^4=x$$
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Hint: Write this as $$fracy'(x)y(x)-y(x)^4=x$$
Hint: Write this as $$fracy'(x)y(x)-y(x)^4=x$$
edited Sep 22 at 14:32
amWhy
191k27222434
191k27222434
answered Sep 22 at 14:10
Dr. Sonnhard Graubner
69.5k32761
69.5k32761
add a comment |Â
add a comment |Â
up vote
1
down vote
Let us solve the Bernoulli differential equation $$y'(x)-xy(x)=-xy(x)^4$$ with initial condition $y (x_0)=y_0$. Dividing by $y^4$ and setting $u=y^-3$, we have the linear ODE
$$
frac13 u'(x)+xu(x) = x
$$
with initial condition $u (x_0)=y_0^-3$. The solution obtained by integrating factor reads
beginaligned
u(x) &= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + 3 int_x_0^x t e^3t^2/2 ,text d t right) \
&= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + e^3x^2/2 - e^3x_0^2/2 right) ,
endaligned
from which one deduces $y=u^-1/3$.
add a comment |Â
up vote
1
down vote
Let us solve the Bernoulli differential equation $$y'(x)-xy(x)=-xy(x)^4$$ with initial condition $y (x_0)=y_0$. Dividing by $y^4$ and setting $u=y^-3$, we have the linear ODE
$$
frac13 u'(x)+xu(x) = x
$$
with initial condition $u (x_0)=y_0^-3$. The solution obtained by integrating factor reads
beginaligned
u(x) &= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + 3 int_x_0^x t e^3t^2/2 ,text d t right) \
&= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + e^3x^2/2 - e^3x_0^2/2 right) ,
endaligned
from which one deduces $y=u^-1/3$.
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Let us solve the Bernoulli differential equation $$y'(x)-xy(x)=-xy(x)^4$$ with initial condition $y (x_0)=y_0$. Dividing by $y^4$ and setting $u=y^-3$, we have the linear ODE
$$
frac13 u'(x)+xu(x) = x
$$
with initial condition $u (x_0)=y_0^-3$. The solution obtained by integrating factor reads
beginaligned
u(x) &= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + 3 int_x_0^x t e^3t^2/2 ,text d t right) \
&= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + e^3x^2/2 - e^3x_0^2/2 right) ,
endaligned
from which one deduces $y=u^-1/3$.
Let us solve the Bernoulli differential equation $$y'(x)-xy(x)=-xy(x)^4$$ with initial condition $y (x_0)=y_0$. Dividing by $y^4$ and setting $u=y^-3$, we have the linear ODE
$$
frac13 u'(x)+xu(x) = x
$$
with initial condition $u (x_0)=y_0^-3$. The solution obtained by integrating factor reads
beginaligned
u(x) &= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + 3 int_x_0^x t e^3t^2/2 ,text d t right) \
&= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + e^3x^2/2 - e^3x_0^2/2 right) ,
endaligned
from which one deduces $y=u^-1/3$.
edited Sep 22 at 14:42
answered Sep 22 at 14:20
Harry49
5,2012828
5,2012828
add a comment |Â
add a comment |Â
up vote
0
down vote
Substitute $z=1/y^3$
$$z'+3xz=3x$$
Tis equation is separable
$$z'=3x(1-z)$$
$$int frac dz1-z=frac 32x^2+C$$
$$-ln (z-1)=frac 32x^2+C$$
$$implies y^3(x)=frac 1 Ke^-3x^2/2+1$$
Therefore
$$y_0^3=frac 1 Ke^-3x_0^2/2+1$$
$$Ke^-3x_0^2/2=frac 1 y_0^3-1$$
$$K=left (frac 1 y_0^3-1 right)e^3x_0^2/2$$
So the final result is $y=frac1[(frac1y_0^3-1)e^-frac32x^2]e^-frac32x^2+1$?
â Marco Pittella
Sep 22 at 14:43
@marco dont forget the exponent $1/3$ and you can also write $e^-3/2(x^2+x_0^2)$
â Isham
Sep 22 at 15:11
add a comment |Â
up vote
0
down vote
Substitute $z=1/y^3$
$$z'+3xz=3x$$
Tis equation is separable
$$z'=3x(1-z)$$
$$int frac dz1-z=frac 32x^2+C$$
$$-ln (z-1)=frac 32x^2+C$$
$$implies y^3(x)=frac 1 Ke^-3x^2/2+1$$
Therefore
$$y_0^3=frac 1 Ke^-3x_0^2/2+1$$
$$Ke^-3x_0^2/2=frac 1 y_0^3-1$$
$$K=left (frac 1 y_0^3-1 right)e^3x_0^2/2$$
So the final result is $y=frac1[(frac1y_0^3-1)e^-frac32x^2]e^-frac32x^2+1$?
â Marco Pittella
Sep 22 at 14:43
@marco dont forget the exponent $1/3$ and you can also write $e^-3/2(x^2+x_0^2)$
â Isham
Sep 22 at 15:11
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Substitute $z=1/y^3$
$$z'+3xz=3x$$
Tis equation is separable
$$z'=3x(1-z)$$
$$int frac dz1-z=frac 32x^2+C$$
$$-ln (z-1)=frac 32x^2+C$$
$$implies y^3(x)=frac 1 Ke^-3x^2/2+1$$
Therefore
$$y_0^3=frac 1 Ke^-3x_0^2/2+1$$
$$Ke^-3x_0^2/2=frac 1 y_0^3-1$$
$$K=left (frac 1 y_0^3-1 right)e^3x_0^2/2$$
Substitute $z=1/y^3$
$$z'+3xz=3x$$
Tis equation is separable
$$z'=3x(1-z)$$
$$int frac dz1-z=frac 32x^2+C$$
$$-ln (z-1)=frac 32x^2+C$$
$$implies y^3(x)=frac 1 Ke^-3x^2/2+1$$
Therefore
$$y_0^3=frac 1 Ke^-3x_0^2/2+1$$
$$Ke^-3x_0^2/2=frac 1 y_0^3-1$$
$$K=left (frac 1 y_0^3-1 right)e^3x_0^2/2$$
edited Sep 22 at 14:33
answered Sep 22 at 14:27
Isham
11.5k3929
11.5k3929
So the final result is $y=frac1[(frac1y_0^3-1)e^-frac32x^2]e^-frac32x^2+1$?
â Marco Pittella
Sep 22 at 14:43
@marco dont forget the exponent $1/3$ and you can also write $e^-3/2(x^2+x_0^2)$
â Isham
Sep 22 at 15:11
add a comment |Â
So the final result is $y=frac1[(frac1y_0^3-1)e^-frac32x^2]e^-frac32x^2+1$?
â Marco Pittella
Sep 22 at 14:43
@marco dont forget the exponent $1/3$ and you can also write $e^-3/2(x^2+x_0^2)$
â Isham
Sep 22 at 15:11
So the final result is $y=frac1[(frac1y_0^3-1)e^-frac32x^2]e^-frac32x^2+1$?
â Marco Pittella
Sep 22 at 14:43
So the final result is $y=frac1[(frac1y_0^3-1)e^-frac32x^2]e^-frac32x^2+1$?
â Marco Pittella
Sep 22 at 14:43
@marco dont forget the exponent $1/3$ and you can also write $e^-3/2(x^2+x_0^2)$
â Isham
Sep 22 at 15:11
@marco dont forget the exponent $1/3$ and you can also write $e^-3/2(x^2+x_0^2)$
â Isham
Sep 22 at 15:11
add a comment |Â
up vote
0
down vote
We have $$C=e^frac3x_0^22(y_0^-1/3-1)$$
add a comment |Â
up vote
0
down vote
We have $$C=e^frac3x_0^22(y_0^-1/3-1)$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
We have $$C=e^frac3x_0^22(y_0^-1/3-1)$$
We have $$C=e^frac3x_0^22(y_0^-1/3-1)$$
edited Sep 22 at 14:36
amWhy
191k27222434
191k27222434
answered Sep 22 at 14:16
dmtri
1,046519
1,046519
add a comment |Â
add a comment |Â
up vote
0
down vote
To reach a better understanding of my problem, i will write all the passages.
$fracy^'y^4=fracxyy^3-xrightarrow fracy^'y^4=xy^-3-x$
Now i put $z=y^-3rightarrow z^'=-3xz+3x$.
$y_0(x)=Ce^A(x)rightarrow A(x)=int -3xdx=-frac32x^2rightarrow y_0(x)=Ce^-frac32x^2$
$y_p(x)=e^A(x)B(x)rightarrow B(x)=int -3xcdot e^A(x)dx=int -3xcdot e^frac32x^2dx$
Now i put $frac32x^2=trightarrow dt=3xdxrightarrow dx=fracdx3x$
Since $int -3xe^tfracdt3x=-e^frac32x^2rightarrow y_px=1$, i obtain $y(x)=Ce^-frac32x^2+1$. But since $y^-3=z$...the result that i wrote.
the notation is a bit confusing...Dont write y when you are solving for z... Once you made the substitution you have an equation with a function z and a variable x. Apart from this it looks correct to me
â Isham
Sep 22 at 15:48
add a comment |Â
up vote
0
down vote
To reach a better understanding of my problem, i will write all the passages.
$fracy^'y^4=fracxyy^3-xrightarrow fracy^'y^4=xy^-3-x$
Now i put $z=y^-3rightarrow z^'=-3xz+3x$.
$y_0(x)=Ce^A(x)rightarrow A(x)=int -3xdx=-frac32x^2rightarrow y_0(x)=Ce^-frac32x^2$
$y_p(x)=e^A(x)B(x)rightarrow B(x)=int -3xcdot e^A(x)dx=int -3xcdot e^frac32x^2dx$
Now i put $frac32x^2=trightarrow dt=3xdxrightarrow dx=fracdx3x$
Since $int -3xe^tfracdt3x=-e^frac32x^2rightarrow y_px=1$, i obtain $y(x)=Ce^-frac32x^2+1$. But since $y^-3=z$...the result that i wrote.
the notation is a bit confusing...Dont write y when you are solving for z... Once you made the substitution you have an equation with a function z and a variable x. Apart from this it looks correct to me
â Isham
Sep 22 at 15:48
add a comment |Â
up vote
0
down vote
up vote
0
down vote
To reach a better understanding of my problem, i will write all the passages.
$fracy^'y^4=fracxyy^3-xrightarrow fracy^'y^4=xy^-3-x$
Now i put $z=y^-3rightarrow z^'=-3xz+3x$.
$y_0(x)=Ce^A(x)rightarrow A(x)=int -3xdx=-frac32x^2rightarrow y_0(x)=Ce^-frac32x^2$
$y_p(x)=e^A(x)B(x)rightarrow B(x)=int -3xcdot e^A(x)dx=int -3xcdot e^frac32x^2dx$
Now i put $frac32x^2=trightarrow dt=3xdxrightarrow dx=fracdx3x$
Since $int -3xe^tfracdt3x=-e^frac32x^2rightarrow y_px=1$, i obtain $y(x)=Ce^-frac32x^2+1$. But since $y^-3=z$...the result that i wrote.
To reach a better understanding of my problem, i will write all the passages.
$fracy^'y^4=fracxyy^3-xrightarrow fracy^'y^4=xy^-3-x$
Now i put $z=y^-3rightarrow z^'=-3xz+3x$.
$y_0(x)=Ce^A(x)rightarrow A(x)=int -3xdx=-frac32x^2rightarrow y_0(x)=Ce^-frac32x^2$
$y_p(x)=e^A(x)B(x)rightarrow B(x)=int -3xcdot e^A(x)dx=int -3xcdot e^frac32x^2dx$
Now i put $frac32x^2=trightarrow dt=3xdxrightarrow dx=fracdx3x$
Since $int -3xe^tfracdt3x=-e^frac32x^2rightarrow y_px=1$, i obtain $y(x)=Ce^-frac32x^2+1$. But since $y^-3=z$...the result that i wrote.
edited Sep 22 at 14:50
answered Sep 22 at 14:30
Marco Pittella
897
897
the notation is a bit confusing...Dont write y when you are solving for z... Once you made the substitution you have an equation with a function z and a variable x. Apart from this it looks correct to me
â Isham
Sep 22 at 15:48
add a comment |Â
the notation is a bit confusing...Dont write y when you are solving for z... Once you made the substitution you have an equation with a function z and a variable x. Apart from this it looks correct to me
â Isham
Sep 22 at 15:48
the notation is a bit confusing...Dont write y when you are solving for z... Once you made the substitution you have an equation with a function z and a variable x. Apart from this it looks correct to me
â Isham
Sep 22 at 15:48
the notation is a bit confusing...Dont write y when you are solving for z... Once you made the substitution you have an equation with a function z and a variable x. Apart from this it looks correct to me
â Isham
Sep 22 at 15:48
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2926531%2ffirst-order-non-linear-ode-with-bernoulli%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
You may set $z=y^-3$.
â dmtri
Sep 22 at 14:13
Do you mean you cannot solve for $C$ ?
â dmtri
Sep 22 at 14:13
it's exponent $-1/3$ not $-3$ since we have that$$y(x)=frac 1 (Ke^-3x^2/2+1)^1/3$$
â Isham
Sep 22 at 14:14