Finding a matrix given it's characteristic polynomial

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite
1












I am asked to find a $2 times 2$ matrix with real and whole entries given it's characteristic polynomial:



$$p^2 -5p +1.$$



This is what I have done thus far:



I equated the polynomial to zero, and the roots (eigenvalues) were found to be $2.5 +/- sqrt(21/2$



I named the matrix to be solved $C$,



so $det(C) =$ product of eigenvalues $= 1$



$trace(C) =$ sum of eigenvalues $=5$



I then tried to find C by solving $T^-1 times D times T$, where $D$ is a matrix whose diagonal entries are the eigenvalues solved above, and $T$ is any matrix who's determinant is non zero.



I used $T$ as a $2 times 2$ being



$$beginbmatrix 1 & 1 \ 0 & 1 endbmatrix.$$



I solved $T^-1 times D times T$, and threw it in a calculator to make sure I made no algebraic mistakes, but the answer I received is wrong.



I appreciate any help, thank you.










share|cite|improve this question



















  • 2




    Characteristic polynomial is invariant under similarity, so you made a computational mistake.
    – RghtHndSd
    3 hours ago






  • 2




    it is pretty easy to guess a 2 by 2 matrix of integers with trace 5 and determinant 1
    – Will Jagy
    3 hours ago














up vote
3
down vote

favorite
1












I am asked to find a $2 times 2$ matrix with real and whole entries given it's characteristic polynomial:



$$p^2 -5p +1.$$



This is what I have done thus far:



I equated the polynomial to zero, and the roots (eigenvalues) were found to be $2.5 +/- sqrt(21/2$



I named the matrix to be solved $C$,



so $det(C) =$ product of eigenvalues $= 1$



$trace(C) =$ sum of eigenvalues $=5$



I then tried to find C by solving $T^-1 times D times T$, where $D$ is a matrix whose diagonal entries are the eigenvalues solved above, and $T$ is any matrix who's determinant is non zero.



I used $T$ as a $2 times 2$ being



$$beginbmatrix 1 & 1 \ 0 & 1 endbmatrix.$$



I solved $T^-1 times D times T$, and threw it in a calculator to make sure I made no algebraic mistakes, but the answer I received is wrong.



I appreciate any help, thank you.










share|cite|improve this question



















  • 2




    Characteristic polynomial is invariant under similarity, so you made a computational mistake.
    – RghtHndSd
    3 hours ago






  • 2




    it is pretty easy to guess a 2 by 2 matrix of integers with trace 5 and determinant 1
    – Will Jagy
    3 hours ago












up vote
3
down vote

favorite
1









up vote
3
down vote

favorite
1






1





I am asked to find a $2 times 2$ matrix with real and whole entries given it's characteristic polynomial:



$$p^2 -5p +1.$$



This is what I have done thus far:



I equated the polynomial to zero, and the roots (eigenvalues) were found to be $2.5 +/- sqrt(21/2$



I named the matrix to be solved $C$,



so $det(C) =$ product of eigenvalues $= 1$



$trace(C) =$ sum of eigenvalues $=5$



I then tried to find C by solving $T^-1 times D times T$, where $D$ is a matrix whose diagonal entries are the eigenvalues solved above, and $T$ is any matrix who's determinant is non zero.



I used $T$ as a $2 times 2$ being



$$beginbmatrix 1 & 1 \ 0 & 1 endbmatrix.$$



I solved $T^-1 times D times T$, and threw it in a calculator to make sure I made no algebraic mistakes, but the answer I received is wrong.



I appreciate any help, thank you.










share|cite|improve this question















I am asked to find a $2 times 2$ matrix with real and whole entries given it's characteristic polynomial:



$$p^2 -5p +1.$$



This is what I have done thus far:



I equated the polynomial to zero, and the roots (eigenvalues) were found to be $2.5 +/- sqrt(21/2$



I named the matrix to be solved $C$,



so $det(C) =$ product of eigenvalues $= 1$



$trace(C) =$ sum of eigenvalues $=5$



I then tried to find C by solving $T^-1 times D times T$, where $D$ is a matrix whose diagonal entries are the eigenvalues solved above, and $T$ is any matrix who's determinant is non zero.



I used $T$ as a $2 times 2$ being



$$beginbmatrix 1 & 1 \ 0 & 1 endbmatrix.$$



I solved $T^-1 times D times T$, and threw it in a calculator to make sure I made no algebraic mistakes, but the answer I received is wrong.



I appreciate any help, thank you.







linear-algebra matrices polynomials






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago









Robert Lewis

40.1k22459




40.1k22459










asked 4 hours ago









Michel

724




724







  • 2




    Characteristic polynomial is invariant under similarity, so you made a computational mistake.
    – RghtHndSd
    3 hours ago






  • 2




    it is pretty easy to guess a 2 by 2 matrix of integers with trace 5 and determinant 1
    – Will Jagy
    3 hours ago












  • 2




    Characteristic polynomial is invariant under similarity, so you made a computational mistake.
    – RghtHndSd
    3 hours ago






  • 2




    it is pretty easy to guess a 2 by 2 matrix of integers with trace 5 and determinant 1
    – Will Jagy
    3 hours ago







2




2




Characteristic polynomial is invariant under similarity, so you made a computational mistake.
– RghtHndSd
3 hours ago




Characteristic polynomial is invariant under similarity, so you made a computational mistake.
– RghtHndSd
3 hours ago




2




2




it is pretty easy to guess a 2 by 2 matrix of integers with trace 5 and determinant 1
– Will Jagy
3 hours ago




it is pretty easy to guess a 2 by 2 matrix of integers with trace 5 and determinant 1
– Will Jagy
3 hours ago










2 Answers
2






active

oldest

votes

















up vote
2
down vote













Your choice of $T$ would not lead to whole entries.



Guide:



Let $C=beginbmatrixa & b \ c & d endbmatrix$.



We need $a+d=5$ and $ad-bc=1$



You can let $a=0$, then we end up having $-bc=1$. Can you choose some possible values of $b$ and $c$ to let it satisfy the equation?






share|cite|improve this answer





























    up vote
    2
    down vote













    Let's start off by looking at the characteristic polynomial of the $2 times 2$ matrix



    $A = beginbmatrix 0 & 1 \ -a & -b endbmatrix: tag 1$



    $det (A - lambda I) = det left (beginbmatrix -lambda & 1 \ -a & -b - lambda endbmatrix right ) = lambda^2 + blambda + a; tag 2$



    we see from (2) that we may always present a $2 times 2$ matrix with given characteristic polynomial $lambda^2 + blambda + a$ in the form $A$; for example, if he quadratic is $lambda^2 + 5lambda + 1$, as in the present problem (tho' I have replaced $p$ with $lambda$), we may take



    $P = beginbmatrix 0 & 1 \ -1 & -5 endbmatrix, tag 3$



    which may be easily checked:



    $det(P - lambda I) = -lambda(-5 - lambda) - 1 ( -1) = lambda^2 + 5lambda + 1. tag 4$



    The matrices $A$ and $P$ above are part of a general paradigm for constructing matrices with a given characteristic polynomial, and it extends to higher dimensions. Now, there are a very many matrices possessed of a given characteristic polynomial, since it is a similarity invariant; that is, the characteristic polynomials of $X$ and $S^-1XS$ are always the same; thus it behooves us to find a matrix of particularly simple, general form for a given polynomial. If



    $q(lambda) = displaystyle sum_1^n q_i lambda^i, ; q_n = 1, tag5$



    we define $C(q(lambda))$ to be the $n times n$ matrix



    $C(q(lambda)) = beginbmatrix 0 & 1 & 0 & ldots & 0 \ 0 & 0 & 1 & ldots & 0 \
    vdots & vdots & ldots & vdots & vdots \ -q_0 & -q_1 & -q_2 & ldots & -q_n - 1 endbmatrix; tag 6$



    that is, $C(q(lambda))$ has all $1$s on the superdiagonal, the negatives of the coefficients of $q(lambda)$ on the $n$-th row, and $0$s everywhere else. We have



    $C(q(lambda) - lambda I = beginbmatrix -lambda & 1 & 0 & ldots & 0 \ 0 & -lambda & 1 & ldots & 0 \
    vdots & vdots & ldots & vdots & vdots \ -q_0 & -q_1 & -q_2 & ldots & -q_n - 1 - lambda endbmatrix; tag 7$



    it is easy to see, by expanding in minors along the $n$-th row, that



    $det(C(q(lambda)) - lambda I) = q(lambda); tag 8$



    also, since a matrix and its transpose have equal determinants, the transposed form $C(q(lambda))$, $C^T(q(lambda))$, also gives rise to the same characteristic polynomial. The matrices $C(q(lambda))$ and $C^T(q(lambda))$ are known as companion matrices for the polynomial $q(lambda)$; the linked article has more of the story.






    share|cite|improve this answer




















      Your Answer




      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2952073%2ffinding-a-matrix-given-its-characteristic-polynomial%23new-answer', 'question_page');

      );

      Post as a guest






























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      2
      down vote













      Your choice of $T$ would not lead to whole entries.



      Guide:



      Let $C=beginbmatrixa & b \ c & d endbmatrix$.



      We need $a+d=5$ and $ad-bc=1$



      You can let $a=0$, then we end up having $-bc=1$. Can you choose some possible values of $b$ and $c$ to let it satisfy the equation?






      share|cite|improve this answer


























        up vote
        2
        down vote













        Your choice of $T$ would not lead to whole entries.



        Guide:



        Let $C=beginbmatrixa & b \ c & d endbmatrix$.



        We need $a+d=5$ and $ad-bc=1$



        You can let $a=0$, then we end up having $-bc=1$. Can you choose some possible values of $b$ and $c$ to let it satisfy the equation?






        share|cite|improve this answer
























          up vote
          2
          down vote










          up vote
          2
          down vote









          Your choice of $T$ would not lead to whole entries.



          Guide:



          Let $C=beginbmatrixa & b \ c & d endbmatrix$.



          We need $a+d=5$ and $ad-bc=1$



          You can let $a=0$, then we end up having $-bc=1$. Can you choose some possible values of $b$ and $c$ to let it satisfy the equation?






          share|cite|improve this answer














          Your choice of $T$ would not lead to whole entries.



          Guide:



          Let $C=beginbmatrixa & b \ c & d endbmatrix$.



          We need $a+d=5$ and $ad-bc=1$



          You can let $a=0$, then we end up having $-bc=1$. Can you choose some possible values of $b$ and $c$ to let it satisfy the equation?







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 3 hours ago

























          answered 3 hours ago









          Siong Thye Goh

          85.9k1458107




          85.9k1458107




















              up vote
              2
              down vote













              Let's start off by looking at the characteristic polynomial of the $2 times 2$ matrix



              $A = beginbmatrix 0 & 1 \ -a & -b endbmatrix: tag 1$



              $det (A - lambda I) = det left (beginbmatrix -lambda & 1 \ -a & -b - lambda endbmatrix right ) = lambda^2 + blambda + a; tag 2$



              we see from (2) that we may always present a $2 times 2$ matrix with given characteristic polynomial $lambda^2 + blambda + a$ in the form $A$; for example, if he quadratic is $lambda^2 + 5lambda + 1$, as in the present problem (tho' I have replaced $p$ with $lambda$), we may take



              $P = beginbmatrix 0 & 1 \ -1 & -5 endbmatrix, tag 3$



              which may be easily checked:



              $det(P - lambda I) = -lambda(-5 - lambda) - 1 ( -1) = lambda^2 + 5lambda + 1. tag 4$



              The matrices $A$ and $P$ above are part of a general paradigm for constructing matrices with a given characteristic polynomial, and it extends to higher dimensions. Now, there are a very many matrices possessed of a given characteristic polynomial, since it is a similarity invariant; that is, the characteristic polynomials of $X$ and $S^-1XS$ are always the same; thus it behooves us to find a matrix of particularly simple, general form for a given polynomial. If



              $q(lambda) = displaystyle sum_1^n q_i lambda^i, ; q_n = 1, tag5$



              we define $C(q(lambda))$ to be the $n times n$ matrix



              $C(q(lambda)) = beginbmatrix 0 & 1 & 0 & ldots & 0 \ 0 & 0 & 1 & ldots & 0 \
              vdots & vdots & ldots & vdots & vdots \ -q_0 & -q_1 & -q_2 & ldots & -q_n - 1 endbmatrix; tag 6$



              that is, $C(q(lambda))$ has all $1$s on the superdiagonal, the negatives of the coefficients of $q(lambda)$ on the $n$-th row, and $0$s everywhere else. We have



              $C(q(lambda) - lambda I = beginbmatrix -lambda & 1 & 0 & ldots & 0 \ 0 & -lambda & 1 & ldots & 0 \
              vdots & vdots & ldots & vdots & vdots \ -q_0 & -q_1 & -q_2 & ldots & -q_n - 1 - lambda endbmatrix; tag 7$



              it is easy to see, by expanding in minors along the $n$-th row, that



              $det(C(q(lambda)) - lambda I) = q(lambda); tag 8$



              also, since a matrix and its transpose have equal determinants, the transposed form $C(q(lambda))$, $C^T(q(lambda))$, also gives rise to the same characteristic polynomial. The matrices $C(q(lambda))$ and $C^T(q(lambda))$ are known as companion matrices for the polynomial $q(lambda)$; the linked article has more of the story.






              share|cite|improve this answer
























                up vote
                2
                down vote













                Let's start off by looking at the characteristic polynomial of the $2 times 2$ matrix



                $A = beginbmatrix 0 & 1 \ -a & -b endbmatrix: tag 1$



                $det (A - lambda I) = det left (beginbmatrix -lambda & 1 \ -a & -b - lambda endbmatrix right ) = lambda^2 + blambda + a; tag 2$



                we see from (2) that we may always present a $2 times 2$ matrix with given characteristic polynomial $lambda^2 + blambda + a$ in the form $A$; for example, if he quadratic is $lambda^2 + 5lambda + 1$, as in the present problem (tho' I have replaced $p$ with $lambda$), we may take



                $P = beginbmatrix 0 & 1 \ -1 & -5 endbmatrix, tag 3$



                which may be easily checked:



                $det(P - lambda I) = -lambda(-5 - lambda) - 1 ( -1) = lambda^2 + 5lambda + 1. tag 4$



                The matrices $A$ and $P$ above are part of a general paradigm for constructing matrices with a given characteristic polynomial, and it extends to higher dimensions. Now, there are a very many matrices possessed of a given characteristic polynomial, since it is a similarity invariant; that is, the characteristic polynomials of $X$ and $S^-1XS$ are always the same; thus it behooves us to find a matrix of particularly simple, general form for a given polynomial. If



                $q(lambda) = displaystyle sum_1^n q_i lambda^i, ; q_n = 1, tag5$



                we define $C(q(lambda))$ to be the $n times n$ matrix



                $C(q(lambda)) = beginbmatrix 0 & 1 & 0 & ldots & 0 \ 0 & 0 & 1 & ldots & 0 \
                vdots & vdots & ldots & vdots & vdots \ -q_0 & -q_1 & -q_2 & ldots & -q_n - 1 endbmatrix; tag 6$



                that is, $C(q(lambda))$ has all $1$s on the superdiagonal, the negatives of the coefficients of $q(lambda)$ on the $n$-th row, and $0$s everywhere else. We have



                $C(q(lambda) - lambda I = beginbmatrix -lambda & 1 & 0 & ldots & 0 \ 0 & -lambda & 1 & ldots & 0 \
                vdots & vdots & ldots & vdots & vdots \ -q_0 & -q_1 & -q_2 & ldots & -q_n - 1 - lambda endbmatrix; tag 7$



                it is easy to see, by expanding in minors along the $n$-th row, that



                $det(C(q(lambda)) - lambda I) = q(lambda); tag 8$



                also, since a matrix and its transpose have equal determinants, the transposed form $C(q(lambda))$, $C^T(q(lambda))$, also gives rise to the same characteristic polynomial. The matrices $C(q(lambda))$ and $C^T(q(lambda))$ are known as companion matrices for the polynomial $q(lambda)$; the linked article has more of the story.






                share|cite|improve this answer






















                  up vote
                  2
                  down vote










                  up vote
                  2
                  down vote









                  Let's start off by looking at the characteristic polynomial of the $2 times 2$ matrix



                  $A = beginbmatrix 0 & 1 \ -a & -b endbmatrix: tag 1$



                  $det (A - lambda I) = det left (beginbmatrix -lambda & 1 \ -a & -b - lambda endbmatrix right ) = lambda^2 + blambda + a; tag 2$



                  we see from (2) that we may always present a $2 times 2$ matrix with given characteristic polynomial $lambda^2 + blambda + a$ in the form $A$; for example, if he quadratic is $lambda^2 + 5lambda + 1$, as in the present problem (tho' I have replaced $p$ with $lambda$), we may take



                  $P = beginbmatrix 0 & 1 \ -1 & -5 endbmatrix, tag 3$



                  which may be easily checked:



                  $det(P - lambda I) = -lambda(-5 - lambda) - 1 ( -1) = lambda^2 + 5lambda + 1. tag 4$



                  The matrices $A$ and $P$ above are part of a general paradigm for constructing matrices with a given characteristic polynomial, and it extends to higher dimensions. Now, there are a very many matrices possessed of a given characteristic polynomial, since it is a similarity invariant; that is, the characteristic polynomials of $X$ and $S^-1XS$ are always the same; thus it behooves us to find a matrix of particularly simple, general form for a given polynomial. If



                  $q(lambda) = displaystyle sum_1^n q_i lambda^i, ; q_n = 1, tag5$



                  we define $C(q(lambda))$ to be the $n times n$ matrix



                  $C(q(lambda)) = beginbmatrix 0 & 1 & 0 & ldots & 0 \ 0 & 0 & 1 & ldots & 0 \
                  vdots & vdots & ldots & vdots & vdots \ -q_0 & -q_1 & -q_2 & ldots & -q_n - 1 endbmatrix; tag 6$



                  that is, $C(q(lambda))$ has all $1$s on the superdiagonal, the negatives of the coefficients of $q(lambda)$ on the $n$-th row, and $0$s everywhere else. We have



                  $C(q(lambda) - lambda I = beginbmatrix -lambda & 1 & 0 & ldots & 0 \ 0 & -lambda & 1 & ldots & 0 \
                  vdots & vdots & ldots & vdots & vdots \ -q_0 & -q_1 & -q_2 & ldots & -q_n - 1 - lambda endbmatrix; tag 7$



                  it is easy to see, by expanding in minors along the $n$-th row, that



                  $det(C(q(lambda)) - lambda I) = q(lambda); tag 8$



                  also, since a matrix and its transpose have equal determinants, the transposed form $C(q(lambda))$, $C^T(q(lambda))$, also gives rise to the same characteristic polynomial. The matrices $C(q(lambda))$ and $C^T(q(lambda))$ are known as companion matrices for the polynomial $q(lambda)$; the linked article has more of the story.






                  share|cite|improve this answer












                  Let's start off by looking at the characteristic polynomial of the $2 times 2$ matrix



                  $A = beginbmatrix 0 & 1 \ -a & -b endbmatrix: tag 1$



                  $det (A - lambda I) = det left (beginbmatrix -lambda & 1 \ -a & -b - lambda endbmatrix right ) = lambda^2 + blambda + a; tag 2$



                  we see from (2) that we may always present a $2 times 2$ matrix with given characteristic polynomial $lambda^2 + blambda + a$ in the form $A$; for example, if he quadratic is $lambda^2 + 5lambda + 1$, as in the present problem (tho' I have replaced $p$ with $lambda$), we may take



                  $P = beginbmatrix 0 & 1 \ -1 & -5 endbmatrix, tag 3$



                  which may be easily checked:



                  $det(P - lambda I) = -lambda(-5 - lambda) - 1 ( -1) = lambda^2 + 5lambda + 1. tag 4$



                  The matrices $A$ and $P$ above are part of a general paradigm for constructing matrices with a given characteristic polynomial, and it extends to higher dimensions. Now, there are a very many matrices possessed of a given characteristic polynomial, since it is a similarity invariant; that is, the characteristic polynomials of $X$ and $S^-1XS$ are always the same; thus it behooves us to find a matrix of particularly simple, general form for a given polynomial. If



                  $q(lambda) = displaystyle sum_1^n q_i lambda^i, ; q_n = 1, tag5$



                  we define $C(q(lambda))$ to be the $n times n$ matrix



                  $C(q(lambda)) = beginbmatrix 0 & 1 & 0 & ldots & 0 \ 0 & 0 & 1 & ldots & 0 \
                  vdots & vdots & ldots & vdots & vdots \ -q_0 & -q_1 & -q_2 & ldots & -q_n - 1 endbmatrix; tag 6$



                  that is, $C(q(lambda))$ has all $1$s on the superdiagonal, the negatives of the coefficients of $q(lambda)$ on the $n$-th row, and $0$s everywhere else. We have



                  $C(q(lambda) - lambda I = beginbmatrix -lambda & 1 & 0 & ldots & 0 \ 0 & -lambda & 1 & ldots & 0 \
                  vdots & vdots & ldots & vdots & vdots \ -q_0 & -q_1 & -q_2 & ldots & -q_n - 1 - lambda endbmatrix; tag 7$



                  it is easy to see, by expanding in minors along the $n$-th row, that



                  $det(C(q(lambda)) - lambda I) = q(lambda); tag 8$



                  also, since a matrix and its transpose have equal determinants, the transposed form $C(q(lambda))$, $C^T(q(lambda))$, also gives rise to the same characteristic polynomial. The matrices $C(q(lambda))$ and $C^T(q(lambda))$ are known as companion matrices for the polynomial $q(lambda)$; the linked article has more of the story.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 1 hour ago









                  Robert Lewis

                  40.1k22459




                  40.1k22459



























                       

                      draft saved


                      draft discarded















































                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2952073%2ffinding-a-matrix-given-its-characteristic-polynomial%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      Popular posts from this blog

                      How to check contact read email or not when send email to Individual?

                      Christian Cage

                      How to properly install USB display driver for Fresco Logic FL2000DX on Ubuntu?