Complex numbers proof with modulus argument question

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












I'm having trouble with this complex numbers proof.



Prove $|(z-a)/(overline az-1)|=1$ if $a,z$ are any complex numbers, where $zne a$ and $|z|=1$.



I tried substituing $z,a$ for general Cartesian and polar forms, but I couldn't get past the algebra or required simplifications.










share|cite|improve this question



























    up vote
    1
    down vote

    favorite












    I'm having trouble with this complex numbers proof.



    Prove $|(z-a)/(overline az-1)|=1$ if $a,z$ are any complex numbers, where $zne a$ and $|z|=1$.



    I tried substituing $z,a$ for general Cartesian and polar forms, but I couldn't get past the algebra or required simplifications.










    share|cite|improve this question

























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      I'm having trouble with this complex numbers proof.



      Prove $|(z-a)/(overline az-1)|=1$ if $a,z$ are any complex numbers, where $zne a$ and $|z|=1$.



      I tried substituing $z,a$ for general Cartesian and polar forms, but I couldn't get past the algebra or required simplifications.










      share|cite|improve this question















      I'm having trouble with this complex numbers proof.



      Prove $|(z-a)/(overline az-1)|=1$ if $a,z$ are any complex numbers, where $zne a$ and $|z|=1$.



      I tried substituing $z,a$ for general Cartesian and polar forms, but I couldn't get past the algebra or required simplifications.







      complex-numbers






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 27 mins ago









      Parcly Taxel

      36.3k136994




      36.3k136994










      asked 29 mins ago









      anonymous

      1,5901036




      1,5901036




















          3 Answers
          3






          active

          oldest

          votes

















          up vote
          2
          down vote



          accepted










          $$|(z-a)/(overline az-1)|=1iff|z-a|=|overline az-1|$$
          Now, since $|z|=1$,
          $$|overline az-1|=|overline a-1/z|=|overline a-overline z|=|a-z|=|z-a|$$






          share|cite|improve this answer



























            up vote
            2
            down vote













            That's equivalent to $|z-a|=|overline az-1|$. As $|z|=1$, $overline z=z^-1$ and
            so
            $$|overline az-1|=|z||overline a -z^-1|=|overline a -overline z|
            =|overlinea-z|=|a-z|.$$






            share|cite|improve this answer



























              up vote
              2
              down vote













              Another approach is using $z=e^it$ then
              $$left|dfracz-aoverlineaz-1right|=left|dfrace^it-aoverlineae^-it-1right|=dfrac=dfrac=1$$






              share|cite|improve this answer




















                Your Answer




                StackExchange.ifUsing("editor", function ()
                return StackExchange.using("mathjaxEditing", function ()
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                );
                );
                , "mathjax-editing");

                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "69"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                convertImagesToLinks: true,
                noModals: false,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );













                 

                draft saved


                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2960284%2fcomplex-numbers-proof-with-modulus-argument-question%23new-answer', 'question_page');

                );

                Post as a guest






























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes








                up vote
                2
                down vote



                accepted










                $$|(z-a)/(overline az-1)|=1iff|z-a|=|overline az-1|$$
                Now, since $|z|=1$,
                $$|overline az-1|=|overline a-1/z|=|overline a-overline z|=|a-z|=|z-a|$$






                share|cite|improve this answer
























                  up vote
                  2
                  down vote



                  accepted










                  $$|(z-a)/(overline az-1)|=1iff|z-a|=|overline az-1|$$
                  Now, since $|z|=1$,
                  $$|overline az-1|=|overline a-1/z|=|overline a-overline z|=|a-z|=|z-a|$$






                  share|cite|improve this answer






















                    up vote
                    2
                    down vote



                    accepted







                    up vote
                    2
                    down vote



                    accepted






                    $$|(z-a)/(overline az-1)|=1iff|z-a|=|overline az-1|$$
                    Now, since $|z|=1$,
                    $$|overline az-1|=|overline a-1/z|=|overline a-overline z|=|a-z|=|z-a|$$






                    share|cite|improve this answer












                    $$|(z-a)/(overline az-1)|=1iff|z-a|=|overline az-1|$$
                    Now, since $|z|=1$,
                    $$|overline az-1|=|overline a-1/z|=|overline a-overline z|=|a-z|=|z-a|$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 19 mins ago









                    Parcly Taxel

                    36.3k136994




                    36.3k136994




















                        up vote
                        2
                        down vote













                        That's equivalent to $|z-a|=|overline az-1|$. As $|z|=1$, $overline z=z^-1$ and
                        so
                        $$|overline az-1|=|z||overline a -z^-1|=|overline a -overline z|
                        =|overlinea-z|=|a-z|.$$






                        share|cite|improve this answer
























                          up vote
                          2
                          down vote













                          That's equivalent to $|z-a|=|overline az-1|$. As $|z|=1$, $overline z=z^-1$ and
                          so
                          $$|overline az-1|=|z||overline a -z^-1|=|overline a -overline z|
                          =|overlinea-z|=|a-z|.$$






                          share|cite|improve this answer






















                            up vote
                            2
                            down vote










                            up vote
                            2
                            down vote









                            That's equivalent to $|z-a|=|overline az-1|$. As $|z|=1$, $overline z=z^-1$ and
                            so
                            $$|overline az-1|=|z||overline a -z^-1|=|overline a -overline z|
                            =|overlinea-z|=|a-z|.$$






                            share|cite|improve this answer












                            That's equivalent to $|z-a|=|overline az-1|$. As $|z|=1$, $overline z=z^-1$ and
                            so
                            $$|overline az-1|=|z||overline a -z^-1|=|overline a -overline z|
                            =|overlinea-z|=|a-z|.$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 22 mins ago









                            Lord Shark the Unknown

                            92.9k956122




                            92.9k956122




















                                up vote
                                2
                                down vote













                                Another approach is using $z=e^it$ then
                                $$left|dfracz-aoverlineaz-1right|=left|dfrace^it-aoverlineae^-it-1right|=dfrac=dfrac=1$$






                                share|cite|improve this answer
























                                  up vote
                                  2
                                  down vote













                                  Another approach is using $z=e^it$ then
                                  $$left|dfracz-aoverlineaz-1right|=left|dfrace^it-aoverlineae^-it-1right|=dfrac=dfrac=1$$






                                  share|cite|improve this answer






















                                    up vote
                                    2
                                    down vote










                                    up vote
                                    2
                                    down vote









                                    Another approach is using $z=e^it$ then
                                    $$left|dfracz-aoverlineaz-1right|=left|dfrace^it-aoverlineae^-it-1right|=dfrac=dfrac=1$$






                                    share|cite|improve this answer












                                    Another approach is using $z=e^it$ then
                                    $$left|dfracz-aoverlineaz-1right|=left|dfrace^it-aoverlineae^-it-1right|=dfrac=dfrac=1$$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered 12 mins ago









                                    Nosrati

                                    24.1k61952




                                    24.1k61952



























                                         

                                        draft saved


                                        draft discarded















































                                         


                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2960284%2fcomplex-numbers-proof-with-modulus-argument-question%23new-answer', 'question_page');

                                        );

                                        Post as a guest













































































                                        Popular posts from this blog

                                        How to check contact read email or not when send email to Individual?

                                        Displaying single band from multi-band raster using QGIS

                                        How many registers does an x86_64 CPU actually have?