Complex numbers proof with modulus argument question

Multi tool use
Multi tool use

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












I'm having trouble with this complex numbers proof.



Prove $|(z-a)/(overline az-1)|=1$ if $a,z$ are any complex numbers, where $zne a$ and $|z|=1$.



I tried substituing $z,a$ for general Cartesian and polar forms, but I couldn't get past the algebra or required simplifications.










share|cite|improve this question



























    up vote
    1
    down vote

    favorite












    I'm having trouble with this complex numbers proof.



    Prove $|(z-a)/(overline az-1)|=1$ if $a,z$ are any complex numbers, where $zne a$ and $|z|=1$.



    I tried substituing $z,a$ for general Cartesian and polar forms, but I couldn't get past the algebra or required simplifications.










    share|cite|improve this question

























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      I'm having trouble with this complex numbers proof.



      Prove $|(z-a)/(overline az-1)|=1$ if $a,z$ are any complex numbers, where $zne a$ and $|z|=1$.



      I tried substituing $z,a$ for general Cartesian and polar forms, but I couldn't get past the algebra or required simplifications.










      share|cite|improve this question















      I'm having trouble with this complex numbers proof.



      Prove $|(z-a)/(overline az-1)|=1$ if $a,z$ are any complex numbers, where $zne a$ and $|z|=1$.



      I tried substituing $z,a$ for general Cartesian and polar forms, but I couldn't get past the algebra or required simplifications.







      complex-numbers






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 27 mins ago









      Parcly Taxel

      36.3k136994




      36.3k136994










      asked 29 mins ago









      anonymous

      1,5901036




      1,5901036




















          3 Answers
          3






          active

          oldest

          votes

















          up vote
          2
          down vote



          accepted










          $$|(z-a)/(overline az-1)|=1iff|z-a|=|overline az-1|$$
          Now, since $|z|=1$,
          $$|overline az-1|=|overline a-1/z|=|overline a-overline z|=|a-z|=|z-a|$$






          share|cite|improve this answer



























            up vote
            2
            down vote













            That's equivalent to $|z-a|=|overline az-1|$. As $|z|=1$, $overline z=z^-1$ and
            so
            $$|overline az-1|=|z||overline a -z^-1|=|overline a -overline z|
            =|overlinea-z|=|a-z|.$$






            share|cite|improve this answer



























              up vote
              2
              down vote













              Another approach is using $z=e^it$ then
              $$left|dfracz-aoverlineaz-1right|=left|dfrace^it-aoverlineae^-it-1right|=dfrac=dfrac=1$$






              share|cite|improve this answer




















                Your Answer




                StackExchange.ifUsing("editor", function ()
                return StackExchange.using("mathjaxEditing", function ()
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                );
                );
                , "mathjax-editing");

                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "69"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                convertImagesToLinks: true,
                noModals: false,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );













                 

                draft saved


                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2960284%2fcomplex-numbers-proof-with-modulus-argument-question%23new-answer', 'question_page');

                );

                Post as a guest






























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes








                up vote
                2
                down vote



                accepted










                $$|(z-a)/(overline az-1)|=1iff|z-a|=|overline az-1|$$
                Now, since $|z|=1$,
                $$|overline az-1|=|overline a-1/z|=|overline a-overline z|=|a-z|=|z-a|$$






                share|cite|improve this answer
























                  up vote
                  2
                  down vote



                  accepted










                  $$|(z-a)/(overline az-1)|=1iff|z-a|=|overline az-1|$$
                  Now, since $|z|=1$,
                  $$|overline az-1|=|overline a-1/z|=|overline a-overline z|=|a-z|=|z-a|$$






                  share|cite|improve this answer






















                    up vote
                    2
                    down vote



                    accepted







                    up vote
                    2
                    down vote



                    accepted






                    $$|(z-a)/(overline az-1)|=1iff|z-a|=|overline az-1|$$
                    Now, since $|z|=1$,
                    $$|overline az-1|=|overline a-1/z|=|overline a-overline z|=|a-z|=|z-a|$$






                    share|cite|improve this answer












                    $$|(z-a)/(overline az-1)|=1iff|z-a|=|overline az-1|$$
                    Now, since $|z|=1$,
                    $$|overline az-1|=|overline a-1/z|=|overline a-overline z|=|a-z|=|z-a|$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 19 mins ago









                    Parcly Taxel

                    36.3k136994




                    36.3k136994




















                        up vote
                        2
                        down vote













                        That's equivalent to $|z-a|=|overline az-1|$. As $|z|=1$, $overline z=z^-1$ and
                        so
                        $$|overline az-1|=|z||overline a -z^-1|=|overline a -overline z|
                        =|overlinea-z|=|a-z|.$$






                        share|cite|improve this answer
























                          up vote
                          2
                          down vote













                          That's equivalent to $|z-a|=|overline az-1|$. As $|z|=1$, $overline z=z^-1$ and
                          so
                          $$|overline az-1|=|z||overline a -z^-1|=|overline a -overline z|
                          =|overlinea-z|=|a-z|.$$






                          share|cite|improve this answer






















                            up vote
                            2
                            down vote










                            up vote
                            2
                            down vote









                            That's equivalent to $|z-a|=|overline az-1|$. As $|z|=1$, $overline z=z^-1$ and
                            so
                            $$|overline az-1|=|z||overline a -z^-1|=|overline a -overline z|
                            =|overlinea-z|=|a-z|.$$






                            share|cite|improve this answer












                            That's equivalent to $|z-a|=|overline az-1|$. As $|z|=1$, $overline z=z^-1$ and
                            so
                            $$|overline az-1|=|z||overline a -z^-1|=|overline a -overline z|
                            =|overlinea-z|=|a-z|.$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 22 mins ago









                            Lord Shark the Unknown

                            92.9k956122




                            92.9k956122




















                                up vote
                                2
                                down vote













                                Another approach is using $z=e^it$ then
                                $$left|dfracz-aoverlineaz-1right|=left|dfrace^it-aoverlineae^-it-1right|=dfrac=dfrac=1$$






                                share|cite|improve this answer
























                                  up vote
                                  2
                                  down vote













                                  Another approach is using $z=e^it$ then
                                  $$left|dfracz-aoverlineaz-1right|=left|dfrace^it-aoverlineae^-it-1right|=dfrac=dfrac=1$$






                                  share|cite|improve this answer






















                                    up vote
                                    2
                                    down vote










                                    up vote
                                    2
                                    down vote









                                    Another approach is using $z=e^it$ then
                                    $$left|dfracz-aoverlineaz-1right|=left|dfrace^it-aoverlineae^-it-1right|=dfrac=dfrac=1$$






                                    share|cite|improve this answer












                                    Another approach is using $z=e^it$ then
                                    $$left|dfracz-aoverlineaz-1right|=left|dfrace^it-aoverlineae^-it-1right|=dfrac=dfrac=1$$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered 12 mins ago









                                    Nosrati

                                    24.1k61952




                                    24.1k61952



























                                         

                                        draft saved


                                        draft discarded















































                                         


                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2960284%2fcomplex-numbers-proof-with-modulus-argument-question%23new-answer', 'question_page');

                                        );

                                        Post as a guest













































































                                        B7caws7JG4J7 Knc,Q7Ehfe5 49XgcurhCcEwHampAE Zzl58CenjGGdfRAI056poBwZfseN eNGPR3,ZCwd rLwf6Tw3gW5
                                        XbouUbFnx4ErVQoItjwNwecq

                                        Popular posts from this blog

                                        How to check contact read email or not when send email to Individual?

                                        How many registers does an x86_64 CPU actually have?

                                        Displaying single band from multi-band raster using QGIS