Complex numbers, how cand I show that |z1|=|z2|=|z3|?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite
2












Show that if $z_1,z_2,z_3$ are complex numbers, $z_1+z_2+z_3=0$ and $z_1^2+z_2^2+z_3^2=0$ then: $|z_1|=|z_2|=|z_3|$










share|cite|improve this question



























    up vote
    1
    down vote

    favorite
    2












    Show that if $z_1,z_2,z_3$ are complex numbers, $z_1+z_2+z_3=0$ and $z_1^2+z_2^2+z_3^2=0$ then: $|z_1|=|z_2|=|z_3|$










    share|cite|improve this question

























      up vote
      1
      down vote

      favorite
      2









      up vote
      1
      down vote

      favorite
      2






      2





      Show that if $z_1,z_2,z_3$ are complex numbers, $z_1+z_2+z_3=0$ and $z_1^2+z_2^2+z_3^2=0$ then: $|z_1|=|z_2|=|z_3|$










      share|cite|improve this question















      Show that if $z_1,z_2,z_3$ are complex numbers, $z_1+z_2+z_3=0$ and $z_1^2+z_2^2+z_3^2=0$ then: $|z_1|=|z_2|=|z_3|$







      complex-analysis complex-numbers






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 30 mins ago









      Olof Rubin

      1007




      1007










      asked 38 mins ago









      anonimousfifiha

      356




      356




















          3 Answers
          3






          active

          oldest

          votes

















          up vote
          5
          down vote













          $$z_3=-z_1-z_2\
          z_3^2=z_1^2+2z_1z_2+z_2^2$$

          Since $z_3^2=-z_1^2-z_2^2$ you get
          $$z_1^2+z_1z_2+z_2^2=0$$
          Multiplying by $z_1-z_2$ you get
          $$z_1^3=z_2^3$$



          Applying absolute values you get
          $$|z_1|^3=|z_2|^3$$
          and hence
          $$|z_1|=|z_2|$$



          The equality $|z_1|=|z_3|$ can be obtained same way.






          share|cite|improve this answer




















          • (+1) Nicely done.
            – Mark Viola
            6 mins ago

















          up vote
          4
          down vote













          $$z_1 z_2 + z_2 z_3 + z_3 z_1 = big((z_1 + z_2 + z_3)^2 - (z_1^2 + z_2^2 + z_3^2)big)/2 = 0.$$
          So $(z-z_1)(z-z_2)(z-z_3)=z^3-z_1 z_2 z_3$ for any $z$, and $z_1^3=z_2^3=z_3^3(=z_1 z_2 z_3)$.






          share|cite|improve this answer






















          • (+1) Well done!
            – Mark Viola
            7 mins ago

















          up vote
          0
          down vote













          Let $f=(t-z_1)(t-z_2)(t-z_3)$.



          Then $f$ is a cubic polynomial in $t$, with roots $z_1,z_2,z_3$.



          In expanded form, $f$ can be expressed as
          $$f=t^3-at^2+bt-c$$
          where
          beginalign*
          a&=z_1+z_2+z_3\[4pt]
          b&=z_1z_2+z_2z_3+z_3z_1\[4pt]
          c&=z_1z_2z_3\[4pt]
          endalign*

          From $z_1+z_2+z_3=0$, we get $a=0$, and since we also have $z_1^2+z_2^2+z_3^2=0$, the identity
          $$(z_1+z_2+z_3)^2=z_1^2+z_2^2+z_3^2+2(z_1z_2+z_2z_3+z_3z_1)$$
          yields $b=0$.



          Thus, $f=t^3-c$, hence, since
          $$f(z_1)=f(z_2)=f(z_3)=0$$
          we get
          $$z_1^3=z_2^3=z_3^3=c$$
          so $|z_1|^3=|z_2|^3=|z_3|^3$, which yields $|z_1|=|z_2|=|z_3|$.






          share|cite|improve this answer




















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2963634%2fcomplex-numbers-how-cand-i-show-that-z1-z2-z3%23new-answer', 'question_page');

            );

            Post as a guest






























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            5
            down vote













            $$z_3=-z_1-z_2\
            z_3^2=z_1^2+2z_1z_2+z_2^2$$

            Since $z_3^2=-z_1^2-z_2^2$ you get
            $$z_1^2+z_1z_2+z_2^2=0$$
            Multiplying by $z_1-z_2$ you get
            $$z_1^3=z_2^3$$



            Applying absolute values you get
            $$|z_1|^3=|z_2|^3$$
            and hence
            $$|z_1|=|z_2|$$



            The equality $|z_1|=|z_3|$ can be obtained same way.






            share|cite|improve this answer




















            • (+1) Nicely done.
              – Mark Viola
              6 mins ago














            up vote
            5
            down vote













            $$z_3=-z_1-z_2\
            z_3^2=z_1^2+2z_1z_2+z_2^2$$

            Since $z_3^2=-z_1^2-z_2^2$ you get
            $$z_1^2+z_1z_2+z_2^2=0$$
            Multiplying by $z_1-z_2$ you get
            $$z_1^3=z_2^3$$



            Applying absolute values you get
            $$|z_1|^3=|z_2|^3$$
            and hence
            $$|z_1|=|z_2|$$



            The equality $|z_1|=|z_3|$ can be obtained same way.






            share|cite|improve this answer




















            • (+1) Nicely done.
              – Mark Viola
              6 mins ago












            up vote
            5
            down vote










            up vote
            5
            down vote









            $$z_3=-z_1-z_2\
            z_3^2=z_1^2+2z_1z_2+z_2^2$$

            Since $z_3^2=-z_1^2-z_2^2$ you get
            $$z_1^2+z_1z_2+z_2^2=0$$
            Multiplying by $z_1-z_2$ you get
            $$z_1^3=z_2^3$$



            Applying absolute values you get
            $$|z_1|^3=|z_2|^3$$
            and hence
            $$|z_1|=|z_2|$$



            The equality $|z_1|=|z_3|$ can be obtained same way.






            share|cite|improve this answer












            $$z_3=-z_1-z_2\
            z_3^2=z_1^2+2z_1z_2+z_2^2$$

            Since $z_3^2=-z_1^2-z_2^2$ you get
            $$z_1^2+z_1z_2+z_2^2=0$$
            Multiplying by $z_1-z_2$ you get
            $$z_1^3=z_2^3$$



            Applying absolute values you get
            $$|z_1|^3=|z_2|^3$$
            and hence
            $$|z_1|=|z_2|$$



            The equality $|z_1|=|z_3|$ can be obtained same way.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 22 mins ago









            N. S.

            100k5106200




            100k5106200











            • (+1) Nicely done.
              – Mark Viola
              6 mins ago
















            • (+1) Nicely done.
              – Mark Viola
              6 mins ago















            (+1) Nicely done.
            – Mark Viola
            6 mins ago




            (+1) Nicely done.
            – Mark Viola
            6 mins ago










            up vote
            4
            down vote













            $$z_1 z_2 + z_2 z_3 + z_3 z_1 = big((z_1 + z_2 + z_3)^2 - (z_1^2 + z_2^2 + z_3^2)big)/2 = 0.$$
            So $(z-z_1)(z-z_2)(z-z_3)=z^3-z_1 z_2 z_3$ for any $z$, and $z_1^3=z_2^3=z_3^3(=z_1 z_2 z_3)$.






            share|cite|improve this answer






















            • (+1) Well done!
              – Mark Viola
              7 mins ago














            up vote
            4
            down vote













            $$z_1 z_2 + z_2 z_3 + z_3 z_1 = big((z_1 + z_2 + z_3)^2 - (z_1^2 + z_2^2 + z_3^2)big)/2 = 0.$$
            So $(z-z_1)(z-z_2)(z-z_3)=z^3-z_1 z_2 z_3$ for any $z$, and $z_1^3=z_2^3=z_3^3(=z_1 z_2 z_3)$.






            share|cite|improve this answer






















            • (+1) Well done!
              – Mark Viola
              7 mins ago












            up vote
            4
            down vote










            up vote
            4
            down vote









            $$z_1 z_2 + z_2 z_3 + z_3 z_1 = big((z_1 + z_2 + z_3)^2 - (z_1^2 + z_2^2 + z_3^2)big)/2 = 0.$$
            So $(z-z_1)(z-z_2)(z-z_3)=z^3-z_1 z_2 z_3$ for any $z$, and $z_1^3=z_2^3=z_3^3(=z_1 z_2 z_3)$.






            share|cite|improve this answer














            $$z_1 z_2 + z_2 z_3 + z_3 z_1 = big((z_1 + z_2 + z_3)^2 - (z_1^2 + z_2^2 + z_3^2)big)/2 = 0.$$
            So $(z-z_1)(z-z_2)(z-z_3)=z^3-z_1 z_2 z_3$ for any $z$, and $z_1^3=z_2^3=z_3^3(=z_1 z_2 z_3)$.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 11 mins ago

























            answered 30 mins ago









            metamorphy

            1,9361313




            1,9361313











            • (+1) Well done!
              – Mark Viola
              7 mins ago
















            • (+1) Well done!
              – Mark Viola
              7 mins ago















            (+1) Well done!
            – Mark Viola
            7 mins ago




            (+1) Well done!
            – Mark Viola
            7 mins ago










            up vote
            0
            down vote













            Let $f=(t-z_1)(t-z_2)(t-z_3)$.



            Then $f$ is a cubic polynomial in $t$, with roots $z_1,z_2,z_3$.



            In expanded form, $f$ can be expressed as
            $$f=t^3-at^2+bt-c$$
            where
            beginalign*
            a&=z_1+z_2+z_3\[4pt]
            b&=z_1z_2+z_2z_3+z_3z_1\[4pt]
            c&=z_1z_2z_3\[4pt]
            endalign*

            From $z_1+z_2+z_3=0$, we get $a=0$, and since we also have $z_1^2+z_2^2+z_3^2=0$, the identity
            $$(z_1+z_2+z_3)^2=z_1^2+z_2^2+z_3^2+2(z_1z_2+z_2z_3+z_3z_1)$$
            yields $b=0$.



            Thus, $f=t^3-c$, hence, since
            $$f(z_1)=f(z_2)=f(z_3)=0$$
            we get
            $$z_1^3=z_2^3=z_3^3=c$$
            so $|z_1|^3=|z_2|^3=|z_3|^3$, which yields $|z_1|=|z_2|=|z_3|$.






            share|cite|improve this answer
























              up vote
              0
              down vote













              Let $f=(t-z_1)(t-z_2)(t-z_3)$.



              Then $f$ is a cubic polynomial in $t$, with roots $z_1,z_2,z_3$.



              In expanded form, $f$ can be expressed as
              $$f=t^3-at^2+bt-c$$
              where
              beginalign*
              a&=z_1+z_2+z_3\[4pt]
              b&=z_1z_2+z_2z_3+z_3z_1\[4pt]
              c&=z_1z_2z_3\[4pt]
              endalign*

              From $z_1+z_2+z_3=0$, we get $a=0$, and since we also have $z_1^2+z_2^2+z_3^2=0$, the identity
              $$(z_1+z_2+z_3)^2=z_1^2+z_2^2+z_3^2+2(z_1z_2+z_2z_3+z_3z_1)$$
              yields $b=0$.



              Thus, $f=t^3-c$, hence, since
              $$f(z_1)=f(z_2)=f(z_3)=0$$
              we get
              $$z_1^3=z_2^3=z_3^3=c$$
              so $|z_1|^3=|z_2|^3=|z_3|^3$, which yields $|z_1|=|z_2|=|z_3|$.






              share|cite|improve this answer






















                up vote
                0
                down vote










                up vote
                0
                down vote









                Let $f=(t-z_1)(t-z_2)(t-z_3)$.



                Then $f$ is a cubic polynomial in $t$, with roots $z_1,z_2,z_3$.



                In expanded form, $f$ can be expressed as
                $$f=t^3-at^2+bt-c$$
                where
                beginalign*
                a&=z_1+z_2+z_3\[4pt]
                b&=z_1z_2+z_2z_3+z_3z_1\[4pt]
                c&=z_1z_2z_3\[4pt]
                endalign*

                From $z_1+z_2+z_3=0$, we get $a=0$, and since we also have $z_1^2+z_2^2+z_3^2=0$, the identity
                $$(z_1+z_2+z_3)^2=z_1^2+z_2^2+z_3^2+2(z_1z_2+z_2z_3+z_3z_1)$$
                yields $b=0$.



                Thus, $f=t^3-c$, hence, since
                $$f(z_1)=f(z_2)=f(z_3)=0$$
                we get
                $$z_1^3=z_2^3=z_3^3=c$$
                so $|z_1|^3=|z_2|^3=|z_3|^3$, which yields $|z_1|=|z_2|=|z_3|$.






                share|cite|improve this answer












                Let $f=(t-z_1)(t-z_2)(t-z_3)$.



                Then $f$ is a cubic polynomial in $t$, with roots $z_1,z_2,z_3$.



                In expanded form, $f$ can be expressed as
                $$f=t^3-at^2+bt-c$$
                where
                beginalign*
                a&=z_1+z_2+z_3\[4pt]
                b&=z_1z_2+z_2z_3+z_3z_1\[4pt]
                c&=z_1z_2z_3\[4pt]
                endalign*

                From $z_1+z_2+z_3=0$, we get $a=0$, and since we also have $z_1^2+z_2^2+z_3^2=0$, the identity
                $$(z_1+z_2+z_3)^2=z_1^2+z_2^2+z_3^2+2(z_1z_2+z_2z_3+z_3z_1)$$
                yields $b=0$.



                Thus, $f=t^3-c$, hence, since
                $$f(z_1)=f(z_2)=f(z_3)=0$$
                we get
                $$z_1^3=z_2^3=z_3^3=c$$
                so $|z_1|^3=|z_2|^3=|z_3|^3$, which yields $|z_1|=|z_2|=|z_3|$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 10 mins ago









                quasi

                34.5k22561




                34.5k22561



























                     

                    draft saved


                    draft discarded















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2963634%2fcomplex-numbers-how-cand-i-show-that-z1-z2-z3%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    Popular posts from this blog

                    How to check contact read email or not when send email to Individual?

                    Christian Cage

                    How to properly install USB display driver for Fresco Logic FL2000DX on Ubuntu?