Complex numbers, how cand I show that |z1|=|z2|=|z3|?
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Show that if $z_1,z_2,z_3$ are complex numbers, $z_1+z_2+z_3=0$ and $z_1^2+z_2^2+z_3^2=0$ then: $|z_1|=|z_2|=|z_3|$
complex-analysis complex-numbers
add a comment |Â
up vote
1
down vote
favorite
Show that if $z_1,z_2,z_3$ are complex numbers, $z_1+z_2+z_3=0$ and $z_1^2+z_2^2+z_3^2=0$ then: $|z_1|=|z_2|=|z_3|$
complex-analysis complex-numbers
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Show that if $z_1,z_2,z_3$ are complex numbers, $z_1+z_2+z_3=0$ and $z_1^2+z_2^2+z_3^2=0$ then: $|z_1|=|z_2|=|z_3|$
complex-analysis complex-numbers
Show that if $z_1,z_2,z_3$ are complex numbers, $z_1+z_2+z_3=0$ and $z_1^2+z_2^2+z_3^2=0$ then: $|z_1|=|z_2|=|z_3|$
complex-analysis complex-numbers
complex-analysis complex-numbers
edited 30 mins ago
Olof Rubin
1007
1007
asked 38 mins ago
anonimousfifiha
356
356
add a comment |Â
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
5
down vote
$$z_3=-z_1-z_2\
z_3^2=z_1^2+2z_1z_2+z_2^2$$
Since $z_3^2=-z_1^2-z_2^2$ you get
$$z_1^2+z_1z_2+z_2^2=0$$
Multiplying by $z_1-z_2$ you get
$$z_1^3=z_2^3$$
Applying absolute values you get
$$|z_1|^3=|z_2|^3$$
and hence
$$|z_1|=|z_2|$$
The equality $|z_1|=|z_3|$ can be obtained same way.
(+1) Nicely done.
â Mark Viola
6 mins ago
add a comment |Â
up vote
4
down vote
$$z_1 z_2 + z_2 z_3 + z_3 z_1 = big((z_1 + z_2 + z_3)^2 - (z_1^2 + z_2^2 + z_3^2)big)/2 = 0.$$
So $(z-z_1)(z-z_2)(z-z_3)=z^3-z_1 z_2 z_3$ for any $z$, and $z_1^3=z_2^3=z_3^3(=z_1 z_2 z_3)$.
(+1) Well done!
â Mark Viola
7 mins ago
add a comment |Â
up vote
0
down vote
Let $f=(t-z_1)(t-z_2)(t-z_3)$.
Then $f$ is a cubic polynomial in $t$, with roots $z_1,z_2,z_3$.
In expanded form, $f$ can be expressed as
$$f=t^3-at^2+bt-c$$
where
beginalign*
a&=z_1+z_2+z_3\[4pt]
b&=z_1z_2+z_2z_3+z_3z_1\[4pt]
c&=z_1z_2z_3\[4pt]
endalign*
From $z_1+z_2+z_3=0$, we get $a=0$, and since we also have $z_1^2+z_2^2+z_3^2=0$, the identity
$$(z_1+z_2+z_3)^2=z_1^2+z_2^2+z_3^2+2(z_1z_2+z_2z_3+z_3z_1)$$
yields $b=0$.
Thus, $f=t^3-c$, hence, since
$$f(z_1)=f(z_2)=f(z_3)=0$$
we get
$$z_1^3=z_2^3=z_3^3=c$$
so $|z_1|^3=|z_2|^3=|z_3|^3$, which yields $|z_1|=|z_2|=|z_3|$.
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
$$z_3=-z_1-z_2\
z_3^2=z_1^2+2z_1z_2+z_2^2$$
Since $z_3^2=-z_1^2-z_2^2$ you get
$$z_1^2+z_1z_2+z_2^2=0$$
Multiplying by $z_1-z_2$ you get
$$z_1^3=z_2^3$$
Applying absolute values you get
$$|z_1|^3=|z_2|^3$$
and hence
$$|z_1|=|z_2|$$
The equality $|z_1|=|z_3|$ can be obtained same way.
(+1) Nicely done.
â Mark Viola
6 mins ago
add a comment |Â
up vote
5
down vote
$$z_3=-z_1-z_2\
z_3^2=z_1^2+2z_1z_2+z_2^2$$
Since $z_3^2=-z_1^2-z_2^2$ you get
$$z_1^2+z_1z_2+z_2^2=0$$
Multiplying by $z_1-z_2$ you get
$$z_1^3=z_2^3$$
Applying absolute values you get
$$|z_1|^3=|z_2|^3$$
and hence
$$|z_1|=|z_2|$$
The equality $|z_1|=|z_3|$ can be obtained same way.
(+1) Nicely done.
â Mark Viola
6 mins ago
add a comment |Â
up vote
5
down vote
up vote
5
down vote
$$z_3=-z_1-z_2\
z_3^2=z_1^2+2z_1z_2+z_2^2$$
Since $z_3^2=-z_1^2-z_2^2$ you get
$$z_1^2+z_1z_2+z_2^2=0$$
Multiplying by $z_1-z_2$ you get
$$z_1^3=z_2^3$$
Applying absolute values you get
$$|z_1|^3=|z_2|^3$$
and hence
$$|z_1|=|z_2|$$
The equality $|z_1|=|z_3|$ can be obtained same way.
$$z_3=-z_1-z_2\
z_3^2=z_1^2+2z_1z_2+z_2^2$$
Since $z_3^2=-z_1^2-z_2^2$ you get
$$z_1^2+z_1z_2+z_2^2=0$$
Multiplying by $z_1-z_2$ you get
$$z_1^3=z_2^3$$
Applying absolute values you get
$$|z_1|^3=|z_2|^3$$
and hence
$$|z_1|=|z_2|$$
The equality $|z_1|=|z_3|$ can be obtained same way.
answered 22 mins ago
N. S.
100k5106200
100k5106200
(+1) Nicely done.
â Mark Viola
6 mins ago
add a comment |Â
(+1) Nicely done.
â Mark Viola
6 mins ago
(+1) Nicely done.
â Mark Viola
6 mins ago
(+1) Nicely done.
â Mark Viola
6 mins ago
add a comment |Â
up vote
4
down vote
$$z_1 z_2 + z_2 z_3 + z_3 z_1 = big((z_1 + z_2 + z_3)^2 - (z_1^2 + z_2^2 + z_3^2)big)/2 = 0.$$
So $(z-z_1)(z-z_2)(z-z_3)=z^3-z_1 z_2 z_3$ for any $z$, and $z_1^3=z_2^3=z_3^3(=z_1 z_2 z_3)$.
(+1) Well done!
â Mark Viola
7 mins ago
add a comment |Â
up vote
4
down vote
$$z_1 z_2 + z_2 z_3 + z_3 z_1 = big((z_1 + z_2 + z_3)^2 - (z_1^2 + z_2^2 + z_3^2)big)/2 = 0.$$
So $(z-z_1)(z-z_2)(z-z_3)=z^3-z_1 z_2 z_3$ for any $z$, and $z_1^3=z_2^3=z_3^3(=z_1 z_2 z_3)$.
(+1) Well done!
â Mark Viola
7 mins ago
add a comment |Â
up vote
4
down vote
up vote
4
down vote
$$z_1 z_2 + z_2 z_3 + z_3 z_1 = big((z_1 + z_2 + z_3)^2 - (z_1^2 + z_2^2 + z_3^2)big)/2 = 0.$$
So $(z-z_1)(z-z_2)(z-z_3)=z^3-z_1 z_2 z_3$ for any $z$, and $z_1^3=z_2^3=z_3^3(=z_1 z_2 z_3)$.
$$z_1 z_2 + z_2 z_3 + z_3 z_1 = big((z_1 + z_2 + z_3)^2 - (z_1^2 + z_2^2 + z_3^2)big)/2 = 0.$$
So $(z-z_1)(z-z_2)(z-z_3)=z^3-z_1 z_2 z_3$ for any $z$, and $z_1^3=z_2^3=z_3^3(=z_1 z_2 z_3)$.
edited 11 mins ago
answered 30 mins ago
metamorphy
1,9361313
1,9361313
(+1) Well done!
â Mark Viola
7 mins ago
add a comment |Â
(+1) Well done!
â Mark Viola
7 mins ago
(+1) Well done!
â Mark Viola
7 mins ago
(+1) Well done!
â Mark Viola
7 mins ago
add a comment |Â
up vote
0
down vote
Let $f=(t-z_1)(t-z_2)(t-z_3)$.
Then $f$ is a cubic polynomial in $t$, with roots $z_1,z_2,z_3$.
In expanded form, $f$ can be expressed as
$$f=t^3-at^2+bt-c$$
where
beginalign*
a&=z_1+z_2+z_3\[4pt]
b&=z_1z_2+z_2z_3+z_3z_1\[4pt]
c&=z_1z_2z_3\[4pt]
endalign*
From $z_1+z_2+z_3=0$, we get $a=0$, and since we also have $z_1^2+z_2^2+z_3^2=0$, the identity
$$(z_1+z_2+z_3)^2=z_1^2+z_2^2+z_3^2+2(z_1z_2+z_2z_3+z_3z_1)$$
yields $b=0$.
Thus, $f=t^3-c$, hence, since
$$f(z_1)=f(z_2)=f(z_3)=0$$
we get
$$z_1^3=z_2^3=z_3^3=c$$
so $|z_1|^3=|z_2|^3=|z_3|^3$, which yields $|z_1|=|z_2|=|z_3|$.
add a comment |Â
up vote
0
down vote
Let $f=(t-z_1)(t-z_2)(t-z_3)$.
Then $f$ is a cubic polynomial in $t$, with roots $z_1,z_2,z_3$.
In expanded form, $f$ can be expressed as
$$f=t^3-at^2+bt-c$$
where
beginalign*
a&=z_1+z_2+z_3\[4pt]
b&=z_1z_2+z_2z_3+z_3z_1\[4pt]
c&=z_1z_2z_3\[4pt]
endalign*
From $z_1+z_2+z_3=0$, we get $a=0$, and since we also have $z_1^2+z_2^2+z_3^2=0$, the identity
$$(z_1+z_2+z_3)^2=z_1^2+z_2^2+z_3^2+2(z_1z_2+z_2z_3+z_3z_1)$$
yields $b=0$.
Thus, $f=t^3-c$, hence, since
$$f(z_1)=f(z_2)=f(z_3)=0$$
we get
$$z_1^3=z_2^3=z_3^3=c$$
so $|z_1|^3=|z_2|^3=|z_3|^3$, which yields $|z_1|=|z_2|=|z_3|$.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Let $f=(t-z_1)(t-z_2)(t-z_3)$.
Then $f$ is a cubic polynomial in $t$, with roots $z_1,z_2,z_3$.
In expanded form, $f$ can be expressed as
$$f=t^3-at^2+bt-c$$
where
beginalign*
a&=z_1+z_2+z_3\[4pt]
b&=z_1z_2+z_2z_3+z_3z_1\[4pt]
c&=z_1z_2z_3\[4pt]
endalign*
From $z_1+z_2+z_3=0$, we get $a=0$, and since we also have $z_1^2+z_2^2+z_3^2=0$, the identity
$$(z_1+z_2+z_3)^2=z_1^2+z_2^2+z_3^2+2(z_1z_2+z_2z_3+z_3z_1)$$
yields $b=0$.
Thus, $f=t^3-c$, hence, since
$$f(z_1)=f(z_2)=f(z_3)=0$$
we get
$$z_1^3=z_2^3=z_3^3=c$$
so $|z_1|^3=|z_2|^3=|z_3|^3$, which yields $|z_1|=|z_2|=|z_3|$.
Let $f=(t-z_1)(t-z_2)(t-z_3)$.
Then $f$ is a cubic polynomial in $t$, with roots $z_1,z_2,z_3$.
In expanded form, $f$ can be expressed as
$$f=t^3-at^2+bt-c$$
where
beginalign*
a&=z_1+z_2+z_3\[4pt]
b&=z_1z_2+z_2z_3+z_3z_1\[4pt]
c&=z_1z_2z_3\[4pt]
endalign*
From $z_1+z_2+z_3=0$, we get $a=0$, and since we also have $z_1^2+z_2^2+z_3^2=0$, the identity
$$(z_1+z_2+z_3)^2=z_1^2+z_2^2+z_3^2+2(z_1z_2+z_2z_3+z_3z_1)$$
yields $b=0$.
Thus, $f=t^3-c$, hence, since
$$f(z_1)=f(z_2)=f(z_3)=0$$
we get
$$z_1^3=z_2^3=z_3^3=c$$
so $|z_1|^3=|z_2|^3=|z_3|^3$, which yields $|z_1|=|z_2|=|z_3|$.
answered 10 mins ago
quasi
34.5k22561
34.5k22561
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2963634%2fcomplex-numbers-how-cand-i-show-that-z1-z2-z3%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password