How to find lower Riemann integral in given function?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
4
down vote

favorite
2












$f(x)$ defined on $[0,1]$ as following -
$$
beginalign
f(x) = begincases
0 & textif $x=0$\
frac1n & textif $1/(n+1)<xle 1/n$
endcases
endalign
$$



How to find lower Riemann integral of $f(x)$ from $0$ to $1$.
My question is different from How to find the Riemann integral of following function?
Since we know $f(x)$ has countable number of discontinuities hence it is Riemann integrable and we can find it's upper integral for getting the answer .But how to find lower Riemann integral of this function ?



EDIT - I know since $f(x)$ is Riemann integrable hence it's lower Riemann integral is same as upper Riemann integral.But how to find it by partitioning the domain or in other words by using definition of lower Riemann integral.










share|cite|improve this question























  • Since it is Riemann integrable the lower integral is same as upper integral.
    – Paramanand Singh
    Dec 2 at 5:18










  • @ParamanandSingh I know since $f(x)$ is Riemann integrable hence it's lower Riemann integral is same as upper Riemann integral.But how to find it by partitioning the domain or in other words by using definition of lower Riemann integral.
    – Amit
    Dec 2 at 5:26














up vote
4
down vote

favorite
2












$f(x)$ defined on $[0,1]$ as following -
$$
beginalign
f(x) = begincases
0 & textif $x=0$\
frac1n & textif $1/(n+1)<xle 1/n$
endcases
endalign
$$



How to find lower Riemann integral of $f(x)$ from $0$ to $1$.
My question is different from How to find the Riemann integral of following function?
Since we know $f(x)$ has countable number of discontinuities hence it is Riemann integrable and we can find it's upper integral for getting the answer .But how to find lower Riemann integral of this function ?



EDIT - I know since $f(x)$ is Riemann integrable hence it's lower Riemann integral is same as upper Riemann integral.But how to find it by partitioning the domain or in other words by using definition of lower Riemann integral.










share|cite|improve this question























  • Since it is Riemann integrable the lower integral is same as upper integral.
    – Paramanand Singh
    Dec 2 at 5:18










  • @ParamanandSingh I know since $f(x)$ is Riemann integrable hence it's lower Riemann integral is same as upper Riemann integral.But how to find it by partitioning the domain or in other words by using definition of lower Riemann integral.
    – Amit
    Dec 2 at 5:26












up vote
4
down vote

favorite
2









up vote
4
down vote

favorite
2






2





$f(x)$ defined on $[0,1]$ as following -
$$
beginalign
f(x) = begincases
0 & textif $x=0$\
frac1n & textif $1/(n+1)<xle 1/n$
endcases
endalign
$$



How to find lower Riemann integral of $f(x)$ from $0$ to $1$.
My question is different from How to find the Riemann integral of following function?
Since we know $f(x)$ has countable number of discontinuities hence it is Riemann integrable and we can find it's upper integral for getting the answer .But how to find lower Riemann integral of this function ?



EDIT - I know since $f(x)$ is Riemann integrable hence it's lower Riemann integral is same as upper Riemann integral.But how to find it by partitioning the domain or in other words by using definition of lower Riemann integral.










share|cite|improve this question















$f(x)$ defined on $[0,1]$ as following -
$$
beginalign
f(x) = begincases
0 & textif $x=0$\
frac1n & textif $1/(n+1)<xle 1/n$
endcases
endalign
$$



How to find lower Riemann integral of $f(x)$ from $0$ to $1$.
My question is different from How to find the Riemann integral of following function?
Since we know $f(x)$ has countable number of discontinuities hence it is Riemann integrable and we can find it's upper integral for getting the answer .But how to find lower Riemann integral of this function ?



EDIT - I know since $f(x)$ is Riemann integrable hence it's lower Riemann integral is same as upper Riemann integral.But how to find it by partitioning the domain or in other words by using definition of lower Riemann integral.







real-analysis measure-theory riemann-integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 2 at 5:26

























asked Dec 2 at 5:02









Amit

1398




1398











  • Since it is Riemann integrable the lower integral is same as upper integral.
    – Paramanand Singh
    Dec 2 at 5:18










  • @ParamanandSingh I know since $f(x)$ is Riemann integrable hence it's lower Riemann integral is same as upper Riemann integral.But how to find it by partitioning the domain or in other words by using definition of lower Riemann integral.
    – Amit
    Dec 2 at 5:26
















  • Since it is Riemann integrable the lower integral is same as upper integral.
    – Paramanand Singh
    Dec 2 at 5:18










  • @ParamanandSingh I know since $f(x)$ is Riemann integrable hence it's lower Riemann integral is same as upper Riemann integral.But how to find it by partitioning the domain or in other words by using definition of lower Riemann integral.
    – Amit
    Dec 2 at 5:26















Since it is Riemann integrable the lower integral is same as upper integral.
– Paramanand Singh
Dec 2 at 5:18




Since it is Riemann integrable the lower integral is same as upper integral.
– Paramanand Singh
Dec 2 at 5:18












@ParamanandSingh I know since $f(x)$ is Riemann integrable hence it's lower Riemann integral is same as upper Riemann integral.But how to find it by partitioning the domain or in other words by using definition of lower Riemann integral.
– Amit
Dec 2 at 5:26




@ParamanandSingh I know since $f(x)$ is Riemann integrable hence it's lower Riemann integral is same as upper Riemann integral.But how to find it by partitioning the domain or in other words by using definition of lower Riemann integral.
– Amit
Dec 2 at 5:26










3 Answers
3






active

oldest

votes

















up vote
2
down vote



accepted










For every partition $P= x_j_0^n$ where $x_0 = 0, x_n = 1$, there is some $N$ s.t. $x_1 in (1/(N+1), 1/N]$. Then on $[0, x_1]$, the infimum is $0$. On $[1/(N+1), 1]$, $f$ is a step function, i.e. piecewise constant function, then the lower Riemann sum is easy to find:
$$
underline int_x_1^1 f leqslant underline int_1/(N+1)^1 f = sum_1^N int_1/(n+1)^1/n f = sum_1^N left(frac 1n - frac 1n+1right) frac 1n = -1 + frac 1N+1 +sum_1^N frac 1n^2.
$$

Thus
$$
-1 +frac 1N+1 + sum_1^N frac 1n^2underline int_1/(N+1)^1 f leqslant underline int_0^1 f leqslant underline int_0^x_1 f +underline int_x_1^1 f leqslant x_1 + underline int_1/(N+1)^1 f = x_1 - 1+frac 1N+1 + sum_1^N frac 1n^2.
$$



Now let the mesh $delta$ of $P$ goes to $0$. Since $x_1 leqslant delta$, $x_1 to 0$ as well, hence $1/(N+1) to 0$, then $Nto infty$. Take the limit $delta to 0^+$ w.r.t. the inequalities, we have
$$
underline int_0^1 f = -1+sum_1^infty frac 1n^2 =- 1 + frac pi^26.
$$






share|cite|improve this answer





























    up vote
    2
    down vote













    Consider the partitions $P_N=0cup frac1n: 1leq n leq N$. Then the lower sum is $$L(f;P_N)=sum limits _i=1^N m_ileft(frac1i-frac1i+1right)+m_0(frac1N-0)$$



    Then given any partition $P$ you can find an $N$ such that $L(f;P)leq L(f,P_N)$ (why?)



    And how $f$ is constant in each interval of the form $[1/(n+1),1/n]$ the infimum's $m_i$ are just $f(1/i)=1/i$ and $m_0=0$... We have
    $$L(f;P)= sum limits _i=1^N frac1ileft(frac1i-frac1i+1right)$$



    Therefore,
    $$sup _P L(f;P)leq sup _P_N L(f;P_N)= lim _Nto infty sum limits _i=1^N frac1ileft(frac1i-frac1i+1right) = sum limits _i=1^infty frac1ileft(frac1i-frac1i+1right)=fracpi^26 -1$$



    and you also can readly prove $geq$ to conclude equality.






    share|cite|improve this answer



























      up vote
      2
      down vote













      The function $f$ is riemann integrable , so that the function $F:[0,1]rightarrow Bbb R$ defined by $F(x)=underline int_x^1 f(t)dt $ is continuous. In particular, the limit $lim_xrightarrow 0 F(x)$ exists and equals to $F(0)$. That is $$underline int_0^1f(x)dx=F(0)=lim_nrightarrow infty underline int_frac1n+1^1f(t)dt.$$ Now notice that in the interval $[frac1n+1,1]$ number of discontinuities of $f$ is finite, so that the riemann integral $underline int_frac1n+1^1f(t)dt=sum_k=1^nfrac1k(frac1k-frac1k+1)=(sum_k=1^nfrac1k^2)-(1-frac1n+1)$. Therefore , $$underline int_0^1f(t)dt=fracpi^26-1.$$






      share|cite|improve this answer






















        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022257%2fhow-to-find-lower-riemann-integral-in-given-function%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        2
        down vote



        accepted










        For every partition $P= x_j_0^n$ where $x_0 = 0, x_n = 1$, there is some $N$ s.t. $x_1 in (1/(N+1), 1/N]$. Then on $[0, x_1]$, the infimum is $0$. On $[1/(N+1), 1]$, $f$ is a step function, i.e. piecewise constant function, then the lower Riemann sum is easy to find:
        $$
        underline int_x_1^1 f leqslant underline int_1/(N+1)^1 f = sum_1^N int_1/(n+1)^1/n f = sum_1^N left(frac 1n - frac 1n+1right) frac 1n = -1 + frac 1N+1 +sum_1^N frac 1n^2.
        $$

        Thus
        $$
        -1 +frac 1N+1 + sum_1^N frac 1n^2underline int_1/(N+1)^1 f leqslant underline int_0^1 f leqslant underline int_0^x_1 f +underline int_x_1^1 f leqslant x_1 + underline int_1/(N+1)^1 f = x_1 - 1+frac 1N+1 + sum_1^N frac 1n^2.
        $$



        Now let the mesh $delta$ of $P$ goes to $0$. Since $x_1 leqslant delta$, $x_1 to 0$ as well, hence $1/(N+1) to 0$, then $Nto infty$. Take the limit $delta to 0^+$ w.r.t. the inequalities, we have
        $$
        underline int_0^1 f = -1+sum_1^infty frac 1n^2 =- 1 + frac pi^26.
        $$






        share|cite|improve this answer


























          up vote
          2
          down vote



          accepted










          For every partition $P= x_j_0^n$ where $x_0 = 0, x_n = 1$, there is some $N$ s.t. $x_1 in (1/(N+1), 1/N]$. Then on $[0, x_1]$, the infimum is $0$. On $[1/(N+1), 1]$, $f$ is a step function, i.e. piecewise constant function, then the lower Riemann sum is easy to find:
          $$
          underline int_x_1^1 f leqslant underline int_1/(N+1)^1 f = sum_1^N int_1/(n+1)^1/n f = sum_1^N left(frac 1n - frac 1n+1right) frac 1n = -1 + frac 1N+1 +sum_1^N frac 1n^2.
          $$

          Thus
          $$
          -1 +frac 1N+1 + sum_1^N frac 1n^2underline int_1/(N+1)^1 f leqslant underline int_0^1 f leqslant underline int_0^x_1 f +underline int_x_1^1 f leqslant x_1 + underline int_1/(N+1)^1 f = x_1 - 1+frac 1N+1 + sum_1^N frac 1n^2.
          $$



          Now let the mesh $delta$ of $P$ goes to $0$. Since $x_1 leqslant delta$, $x_1 to 0$ as well, hence $1/(N+1) to 0$, then $Nto infty$. Take the limit $delta to 0^+$ w.r.t. the inequalities, we have
          $$
          underline int_0^1 f = -1+sum_1^infty frac 1n^2 =- 1 + frac pi^26.
          $$






          share|cite|improve this answer
























            up vote
            2
            down vote



            accepted







            up vote
            2
            down vote



            accepted






            For every partition $P= x_j_0^n$ where $x_0 = 0, x_n = 1$, there is some $N$ s.t. $x_1 in (1/(N+1), 1/N]$. Then on $[0, x_1]$, the infimum is $0$. On $[1/(N+1), 1]$, $f$ is a step function, i.e. piecewise constant function, then the lower Riemann sum is easy to find:
            $$
            underline int_x_1^1 f leqslant underline int_1/(N+1)^1 f = sum_1^N int_1/(n+1)^1/n f = sum_1^N left(frac 1n - frac 1n+1right) frac 1n = -1 + frac 1N+1 +sum_1^N frac 1n^2.
            $$

            Thus
            $$
            -1 +frac 1N+1 + sum_1^N frac 1n^2underline int_1/(N+1)^1 f leqslant underline int_0^1 f leqslant underline int_0^x_1 f +underline int_x_1^1 f leqslant x_1 + underline int_1/(N+1)^1 f = x_1 - 1+frac 1N+1 + sum_1^N frac 1n^2.
            $$



            Now let the mesh $delta$ of $P$ goes to $0$. Since $x_1 leqslant delta$, $x_1 to 0$ as well, hence $1/(N+1) to 0$, then $Nto infty$. Take the limit $delta to 0^+$ w.r.t. the inequalities, we have
            $$
            underline int_0^1 f = -1+sum_1^infty frac 1n^2 =- 1 + frac pi^26.
            $$






            share|cite|improve this answer














            For every partition $P= x_j_0^n$ where $x_0 = 0, x_n = 1$, there is some $N$ s.t. $x_1 in (1/(N+1), 1/N]$. Then on $[0, x_1]$, the infimum is $0$. On $[1/(N+1), 1]$, $f$ is a step function, i.e. piecewise constant function, then the lower Riemann sum is easy to find:
            $$
            underline int_x_1^1 f leqslant underline int_1/(N+1)^1 f = sum_1^N int_1/(n+1)^1/n f = sum_1^N left(frac 1n - frac 1n+1right) frac 1n = -1 + frac 1N+1 +sum_1^N frac 1n^2.
            $$

            Thus
            $$
            -1 +frac 1N+1 + sum_1^N frac 1n^2underline int_1/(N+1)^1 f leqslant underline int_0^1 f leqslant underline int_0^x_1 f +underline int_x_1^1 f leqslant x_1 + underline int_1/(N+1)^1 f = x_1 - 1+frac 1N+1 + sum_1^N frac 1n^2.
            $$



            Now let the mesh $delta$ of $P$ goes to $0$. Since $x_1 leqslant delta$, $x_1 to 0$ as well, hence $1/(N+1) to 0$, then $Nto infty$. Take the limit $delta to 0^+$ w.r.t. the inequalities, we have
            $$
            underline int_0^1 f = -1+sum_1^infty frac 1n^2 =- 1 + frac pi^26.
            $$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 2 at 6:05

























            answered Dec 2 at 5:49









            xbh

            5,4971422




            5,4971422




















                up vote
                2
                down vote













                Consider the partitions $P_N=0cup frac1n: 1leq n leq N$. Then the lower sum is $$L(f;P_N)=sum limits _i=1^N m_ileft(frac1i-frac1i+1right)+m_0(frac1N-0)$$



                Then given any partition $P$ you can find an $N$ such that $L(f;P)leq L(f,P_N)$ (why?)



                And how $f$ is constant in each interval of the form $[1/(n+1),1/n]$ the infimum's $m_i$ are just $f(1/i)=1/i$ and $m_0=0$... We have
                $$L(f;P)= sum limits _i=1^N frac1ileft(frac1i-frac1i+1right)$$



                Therefore,
                $$sup _P L(f;P)leq sup _P_N L(f;P_N)= lim _Nto infty sum limits _i=1^N frac1ileft(frac1i-frac1i+1right) = sum limits _i=1^infty frac1ileft(frac1i-frac1i+1right)=fracpi^26 -1$$



                and you also can readly prove $geq$ to conclude equality.






                share|cite|improve this answer
























                  up vote
                  2
                  down vote













                  Consider the partitions $P_N=0cup frac1n: 1leq n leq N$. Then the lower sum is $$L(f;P_N)=sum limits _i=1^N m_ileft(frac1i-frac1i+1right)+m_0(frac1N-0)$$



                  Then given any partition $P$ you can find an $N$ such that $L(f;P)leq L(f,P_N)$ (why?)



                  And how $f$ is constant in each interval of the form $[1/(n+1),1/n]$ the infimum's $m_i$ are just $f(1/i)=1/i$ and $m_0=0$... We have
                  $$L(f;P)= sum limits _i=1^N frac1ileft(frac1i-frac1i+1right)$$



                  Therefore,
                  $$sup _P L(f;P)leq sup _P_N L(f;P_N)= lim _Nto infty sum limits _i=1^N frac1ileft(frac1i-frac1i+1right) = sum limits _i=1^infty frac1ileft(frac1i-frac1i+1right)=fracpi^26 -1$$



                  and you also can readly prove $geq$ to conclude equality.






                  share|cite|improve this answer






















                    up vote
                    2
                    down vote










                    up vote
                    2
                    down vote









                    Consider the partitions $P_N=0cup frac1n: 1leq n leq N$. Then the lower sum is $$L(f;P_N)=sum limits _i=1^N m_ileft(frac1i-frac1i+1right)+m_0(frac1N-0)$$



                    Then given any partition $P$ you can find an $N$ such that $L(f;P)leq L(f,P_N)$ (why?)



                    And how $f$ is constant in each interval of the form $[1/(n+1),1/n]$ the infimum's $m_i$ are just $f(1/i)=1/i$ and $m_0=0$... We have
                    $$L(f;P)= sum limits _i=1^N frac1ileft(frac1i-frac1i+1right)$$



                    Therefore,
                    $$sup _P L(f;P)leq sup _P_N L(f;P_N)= lim _Nto infty sum limits _i=1^N frac1ileft(frac1i-frac1i+1right) = sum limits _i=1^infty frac1ileft(frac1i-frac1i+1right)=fracpi^26 -1$$



                    and you also can readly prove $geq$ to conclude equality.






                    share|cite|improve this answer












                    Consider the partitions $P_N=0cup frac1n: 1leq n leq N$. Then the lower sum is $$L(f;P_N)=sum limits _i=1^N m_ileft(frac1i-frac1i+1right)+m_0(frac1N-0)$$



                    Then given any partition $P$ you can find an $N$ such that $L(f;P)leq L(f,P_N)$ (why?)



                    And how $f$ is constant in each interval of the form $[1/(n+1),1/n]$ the infimum's $m_i$ are just $f(1/i)=1/i$ and $m_0=0$... We have
                    $$L(f;P)= sum limits _i=1^N frac1ileft(frac1i-frac1i+1right)$$



                    Therefore,
                    $$sup _P L(f;P)leq sup _P_N L(f;P_N)= lim _Nto infty sum limits _i=1^N frac1ileft(frac1i-frac1i+1right) = sum limits _i=1^infty frac1ileft(frac1i-frac1i+1right)=fracpi^26 -1$$



                    and you also can readly prove $geq$ to conclude equality.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Dec 2 at 5:38









                    Robson

                    771221




                    771221




















                        up vote
                        2
                        down vote













                        The function $f$ is riemann integrable , so that the function $F:[0,1]rightarrow Bbb R$ defined by $F(x)=underline int_x^1 f(t)dt $ is continuous. In particular, the limit $lim_xrightarrow 0 F(x)$ exists and equals to $F(0)$. That is $$underline int_0^1f(x)dx=F(0)=lim_nrightarrow infty underline int_frac1n+1^1f(t)dt.$$ Now notice that in the interval $[frac1n+1,1]$ number of discontinuities of $f$ is finite, so that the riemann integral $underline int_frac1n+1^1f(t)dt=sum_k=1^nfrac1k(frac1k-frac1k+1)=(sum_k=1^nfrac1k^2)-(1-frac1n+1)$. Therefore , $$underline int_0^1f(t)dt=fracpi^26-1.$$






                        share|cite|improve this answer


























                          up vote
                          2
                          down vote













                          The function $f$ is riemann integrable , so that the function $F:[0,1]rightarrow Bbb R$ defined by $F(x)=underline int_x^1 f(t)dt $ is continuous. In particular, the limit $lim_xrightarrow 0 F(x)$ exists and equals to $F(0)$. That is $$underline int_0^1f(x)dx=F(0)=lim_nrightarrow infty underline int_frac1n+1^1f(t)dt.$$ Now notice that in the interval $[frac1n+1,1]$ number of discontinuities of $f$ is finite, so that the riemann integral $underline int_frac1n+1^1f(t)dt=sum_k=1^nfrac1k(frac1k-frac1k+1)=(sum_k=1^nfrac1k^2)-(1-frac1n+1)$. Therefore , $$underline int_0^1f(t)dt=fracpi^26-1.$$






                          share|cite|improve this answer
























                            up vote
                            2
                            down vote










                            up vote
                            2
                            down vote









                            The function $f$ is riemann integrable , so that the function $F:[0,1]rightarrow Bbb R$ defined by $F(x)=underline int_x^1 f(t)dt $ is continuous. In particular, the limit $lim_xrightarrow 0 F(x)$ exists and equals to $F(0)$. That is $$underline int_0^1f(x)dx=F(0)=lim_nrightarrow infty underline int_frac1n+1^1f(t)dt.$$ Now notice that in the interval $[frac1n+1,1]$ number of discontinuities of $f$ is finite, so that the riemann integral $underline int_frac1n+1^1f(t)dt=sum_k=1^nfrac1k(frac1k-frac1k+1)=(sum_k=1^nfrac1k^2)-(1-frac1n+1)$. Therefore , $$underline int_0^1f(t)dt=fracpi^26-1.$$






                            share|cite|improve this answer














                            The function $f$ is riemann integrable , so that the function $F:[0,1]rightarrow Bbb R$ defined by $F(x)=underline int_x^1 f(t)dt $ is continuous. In particular, the limit $lim_xrightarrow 0 F(x)$ exists and equals to $F(0)$. That is $$underline int_0^1f(x)dx=F(0)=lim_nrightarrow infty underline int_frac1n+1^1f(t)dt.$$ Now notice that in the interval $[frac1n+1,1]$ number of discontinuities of $f$ is finite, so that the riemann integral $underline int_frac1n+1^1f(t)dt=sum_k=1^nfrac1k(frac1k-frac1k+1)=(sum_k=1^nfrac1k^2)-(1-frac1n+1)$. Therefore , $$underline int_0^1f(t)dt=fracpi^26-1.$$







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Dec 2 at 6:15

























                            answered Dec 2 at 5:35









                            UserS

                            1,506112




                            1,506112



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.





                                Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                Please pay close attention to the following guidance:


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022257%2fhow-to-find-lower-riemann-integral-in-given-function%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown






                                Popular posts from this blog

                                How to check contact read email or not when send email to Individual?

                                Displaying single band from multi-band raster using QGIS

                                How many registers does an x86_64 CPU actually have?