Derivation of Markov's Inequality

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP












2














I have some problems understanding the derivation of Markov's inequality.



$$
beginalign
EX &= int_-infty^infty xf_X(x)textdx \
&= int_0^infty xf_X(x)textdx & textsince Xgt 0\
&geq int_a^infty xf_X(x)textdx &text for any a gt 0\
&geqint_a^infty af_X(x)textdx & textsince x > atext in the integrated region.
endalign
$$



I don't understand the last step. Didn't we already use the fact that we were integrating over a larger region to write the inequality in the third line? Can someone help me with the difference?










share|cite|improve this question




























    2














    I have some problems understanding the derivation of Markov's inequality.



    $$
    beginalign
    EX &= int_-infty^infty xf_X(x)textdx \
    &= int_0^infty xf_X(x)textdx & textsince Xgt 0\
    &geq int_a^infty xf_X(x)textdx &text for any a gt 0\
    &geqint_a^infty af_X(x)textdx & textsince x > atext in the integrated region.
    endalign
    $$



    I don't understand the last step. Didn't we already use the fact that we were integrating over a larger region to write the inequality in the third line? Can someone help me with the difference?










    share|cite|improve this question


























      2












      2








      2







      I have some problems understanding the derivation of Markov's inequality.



      $$
      beginalign
      EX &= int_-infty^infty xf_X(x)textdx \
      &= int_0^infty xf_X(x)textdx & textsince Xgt 0\
      &geq int_a^infty xf_X(x)textdx &text for any a gt 0\
      &geqint_a^infty af_X(x)textdx & textsince x > atext in the integrated region.
      endalign
      $$



      I don't understand the last step. Didn't we already use the fact that we were integrating over a larger region to write the inequality in the third line? Can someone help me with the difference?










      share|cite|improve this question















      I have some problems understanding the derivation of Markov's inequality.



      $$
      beginalign
      EX &= int_-infty^infty xf_X(x)textdx \
      &= int_0^infty xf_X(x)textdx & textsince Xgt 0\
      &geq int_a^infty xf_X(x)textdx &text for any a gt 0\
      &geqint_a^infty af_X(x)textdx & textsince x > atext in the integrated region.
      endalign
      $$



      I don't understand the last step. Didn't we already use the fact that we were integrating over a larger region to write the inequality in the third line? Can someone help me with the difference?







      probability inequality






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 13 at 19:06









      Mutantoe

      560411




      560411










      asked Dec 13 at 9:28









      Christian

      347




      347




















          5 Answers
          5






          active

          oldest

          votes


















          8














          We could be more verbose in the third step as follows: Let $a > 0$. Then
          $$int_0^infty x f_X (x) textd x = int_a^infty x f_X (x) textd x + int_0^a x f_X (x) textd x.$$
          Now, since $f_X(x) geq 0$ and $xgeq 0 $ for $xin [0,a]$ we have that $int_0^a x f_X (x) textd x geq 0$ (This is where integrating over a larger/smaller region with a postitive integrand plays a role). Therefore
          $$int_a^infty x f_X (x) textd x + int_0^a x f_X (x) textd x geq int_a^infty x f_X (x) textd x + 0 = int_a^infty x f_X (x) textd x$$



          Now let us take a look on the last step: Here we want to use that for $xin[a,infty )$ we have $x geq a$ and therefore it holds that $x f_X (x) geq a f_X (x)$ (Here we just used that over our integral region we have a lower bound of the integrand). Altogether
          $$int_a^infty x f_X (x) textd x geq int_a^infty a f_X (x) textd x = a int_a^infty f_X (x) textd x$$






          share|cite|improve this answer






























            4














            $ f geq g$ implies $int f geq int g$. Integrate $x f(x) I_(a,infty) geq a f(x) I_(a,infty)$ to get the last step.






            share|cite|improve this answer




























              3














              The last step applies: $$forall x;[0leq u(x)leq v(x)]impliesint u(x);dxleqint v(x);dx$$ This for $u(x)=af_X(x)mathbf1_(a,infty)(x)$ and $v(x)=xf_X(x)mathbf1_(a,infty)(x)$ where $ageq0$.






              share|cite|improve this answer






























                2














                The last step uses the fact that the function
                beginalign g : [a,infty) rightarrow [0, infty)\
                x mapsto x f_X(x)
                endalign

                is always larger than
                beginalign h : [a,infty) rightarrow [0, infty)\
                x mapsto a f_X(x)
                endalign

                for (a > 0) in its domain. As you correctly state, the proof uses the fact that you integrate a non-negative function over a smaller region in the second-to-last inequality, not in the last inequality.






                share|cite|improve this answer




























                  2














                  No, there is a difference. Second to third step uses the fact that



                  $int_0^infty xf_X(x)dx = int_0^a xf_X(x)dx+int_a^infty xf_X(x)dx$



                  And



                  $int_0^a xf_X(x) dx>0$



                  Last step uses that $int_a^infty xf_X(x)dx>int_a^infty af_X(x)dx$, because $x>a$ in these limits of integration



                  Hope it is helpful






                  share|cite|improve this answer




















                    Your Answer





                    StackExchange.ifUsing("editor", function ()
                    return StackExchange.using("mathjaxEditing", function ()
                    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                    );
                    );
                    , "mathjax-editing");

                    StackExchange.ready(function()
                    var channelOptions =
                    tags: "".split(" "),
                    id: "69"
                    ;
                    initTagRenderer("".split(" "), "".split(" "), channelOptions);

                    StackExchange.using("externalEditor", function()
                    // Have to fire editor after snippets, if snippets enabled
                    if (StackExchange.settings.snippets.snippetsEnabled)
                    StackExchange.using("snippets", function()
                    createEditor();
                    );

                    else
                    createEditor();

                    );

                    function createEditor()
                    StackExchange.prepareEditor(
                    heartbeatType: 'answer',
                    autoActivateHeartbeat: false,
                    convertImagesToLinks: true,
                    noModals: true,
                    showLowRepImageUploadWarning: true,
                    reputationToPostImages: 10,
                    bindNavPrevention: true,
                    postfix: "",
                    imageUploader:
                    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                    allowUrls: true
                    ,
                    noCode: true, onDemand: true,
                    discardSelector: ".discard-answer"
                    ,immediatelyShowMarkdownHelp:true
                    );



                    );













                    draft saved

                    draft discarded


















                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037798%2fderivation-of-markovs-inequality%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown

























                    5 Answers
                    5






                    active

                    oldest

                    votes








                    5 Answers
                    5






                    active

                    oldest

                    votes









                    active

                    oldest

                    votes






                    active

                    oldest

                    votes









                    8














                    We could be more verbose in the third step as follows: Let $a > 0$. Then
                    $$int_0^infty x f_X (x) textd x = int_a^infty x f_X (x) textd x + int_0^a x f_X (x) textd x.$$
                    Now, since $f_X(x) geq 0$ and $xgeq 0 $ for $xin [0,a]$ we have that $int_0^a x f_X (x) textd x geq 0$ (This is where integrating over a larger/smaller region with a postitive integrand plays a role). Therefore
                    $$int_a^infty x f_X (x) textd x + int_0^a x f_X (x) textd x geq int_a^infty x f_X (x) textd x + 0 = int_a^infty x f_X (x) textd x$$



                    Now let us take a look on the last step: Here we want to use that for $xin[a,infty )$ we have $x geq a$ and therefore it holds that $x f_X (x) geq a f_X (x)$ (Here we just used that over our integral region we have a lower bound of the integrand). Altogether
                    $$int_a^infty x f_X (x) textd x geq int_a^infty a f_X (x) textd x = a int_a^infty f_X (x) textd x$$






                    share|cite|improve this answer



























                      8














                      We could be more verbose in the third step as follows: Let $a > 0$. Then
                      $$int_0^infty x f_X (x) textd x = int_a^infty x f_X (x) textd x + int_0^a x f_X (x) textd x.$$
                      Now, since $f_X(x) geq 0$ and $xgeq 0 $ for $xin [0,a]$ we have that $int_0^a x f_X (x) textd x geq 0$ (This is where integrating over a larger/smaller region with a postitive integrand plays a role). Therefore
                      $$int_a^infty x f_X (x) textd x + int_0^a x f_X (x) textd x geq int_a^infty x f_X (x) textd x + 0 = int_a^infty x f_X (x) textd x$$



                      Now let us take a look on the last step: Here we want to use that for $xin[a,infty )$ we have $x geq a$ and therefore it holds that $x f_X (x) geq a f_X (x)$ (Here we just used that over our integral region we have a lower bound of the integrand). Altogether
                      $$int_a^infty x f_X (x) textd x geq int_a^infty a f_X (x) textd x = a int_a^infty f_X (x) textd x$$






                      share|cite|improve this answer

























                        8












                        8








                        8






                        We could be more verbose in the third step as follows: Let $a > 0$. Then
                        $$int_0^infty x f_X (x) textd x = int_a^infty x f_X (x) textd x + int_0^a x f_X (x) textd x.$$
                        Now, since $f_X(x) geq 0$ and $xgeq 0 $ for $xin [0,a]$ we have that $int_0^a x f_X (x) textd x geq 0$ (This is where integrating over a larger/smaller region with a postitive integrand plays a role). Therefore
                        $$int_a^infty x f_X (x) textd x + int_0^a x f_X (x) textd x geq int_a^infty x f_X (x) textd x + 0 = int_a^infty x f_X (x) textd x$$



                        Now let us take a look on the last step: Here we want to use that for $xin[a,infty )$ we have $x geq a$ and therefore it holds that $x f_X (x) geq a f_X (x)$ (Here we just used that over our integral region we have a lower bound of the integrand). Altogether
                        $$int_a^infty x f_X (x) textd x geq int_a^infty a f_X (x) textd x = a int_a^infty f_X (x) textd x$$






                        share|cite|improve this answer














                        We could be more verbose in the third step as follows: Let $a > 0$. Then
                        $$int_0^infty x f_X (x) textd x = int_a^infty x f_X (x) textd x + int_0^a x f_X (x) textd x.$$
                        Now, since $f_X(x) geq 0$ and $xgeq 0 $ for $xin [0,a]$ we have that $int_0^a x f_X (x) textd x geq 0$ (This is where integrating over a larger/smaller region with a postitive integrand plays a role). Therefore
                        $$int_a^infty x f_X (x) textd x + int_0^a x f_X (x) textd x geq int_a^infty x f_X (x) textd x + 0 = int_a^infty x f_X (x) textd x$$



                        Now let us take a look on the last step: Here we want to use that for $xin[a,infty )$ we have $x geq a$ and therefore it holds that $x f_X (x) geq a f_X (x)$ (Here we just used that over our integral region we have a lower bound of the integrand). Altogether
                        $$int_a^infty x f_X (x) textd x geq int_a^infty a f_X (x) textd x = a int_a^infty f_X (x) textd x$$







                        share|cite|improve this answer














                        share|cite|improve this answer



                        share|cite|improve this answer








                        edited Dec 13 at 20:31









                        Acccumulation

                        6,7212617




                        6,7212617










                        answered Dec 13 at 9:46









                        Falrach

                        1,608223




                        1,608223





















                            4














                            $ f geq g$ implies $int f geq int g$. Integrate $x f(x) I_(a,infty) geq a f(x) I_(a,infty)$ to get the last step.






                            share|cite|improve this answer

























                              4














                              $ f geq g$ implies $int f geq int g$. Integrate $x f(x) I_(a,infty) geq a f(x) I_(a,infty)$ to get the last step.






                              share|cite|improve this answer























                                4












                                4








                                4






                                $ f geq g$ implies $int f geq int g$. Integrate $x f(x) I_(a,infty) geq a f(x) I_(a,infty)$ to get the last step.






                                share|cite|improve this answer












                                $ f geq g$ implies $int f geq int g$. Integrate $x f(x) I_(a,infty) geq a f(x) I_(a,infty)$ to get the last step.







                                share|cite|improve this answer












                                share|cite|improve this answer



                                share|cite|improve this answer










                                answered Dec 13 at 9:42









                                Kavi Rama Murthy

                                48.7k31854




                                48.7k31854





















                                    3














                                    The last step applies: $$forall x;[0leq u(x)leq v(x)]impliesint u(x);dxleqint v(x);dx$$ This for $u(x)=af_X(x)mathbf1_(a,infty)(x)$ and $v(x)=xf_X(x)mathbf1_(a,infty)(x)$ where $ageq0$.






                                    share|cite|improve this answer



























                                      3














                                      The last step applies: $$forall x;[0leq u(x)leq v(x)]impliesint u(x);dxleqint v(x);dx$$ This for $u(x)=af_X(x)mathbf1_(a,infty)(x)$ and $v(x)=xf_X(x)mathbf1_(a,infty)(x)$ where $ageq0$.






                                      share|cite|improve this answer

























                                        3












                                        3








                                        3






                                        The last step applies: $$forall x;[0leq u(x)leq v(x)]impliesint u(x);dxleqint v(x);dx$$ This for $u(x)=af_X(x)mathbf1_(a,infty)(x)$ and $v(x)=xf_X(x)mathbf1_(a,infty)(x)$ where $ageq0$.






                                        share|cite|improve this answer














                                        The last step applies: $$forall x;[0leq u(x)leq v(x)]impliesint u(x);dxleqint v(x);dx$$ This for $u(x)=af_X(x)mathbf1_(a,infty)(x)$ and $v(x)=xf_X(x)mathbf1_(a,infty)(x)$ where $ageq0$.







                                        share|cite|improve this answer














                                        share|cite|improve this answer



                                        share|cite|improve this answer








                                        edited Dec 13 at 9:48

























                                        answered Dec 13 at 9:41









                                        drhab

                                        97k544128




                                        97k544128





















                                            2














                                            The last step uses the fact that the function
                                            beginalign g : [a,infty) rightarrow [0, infty)\
                                            x mapsto x f_X(x)
                                            endalign

                                            is always larger than
                                            beginalign h : [a,infty) rightarrow [0, infty)\
                                            x mapsto a f_X(x)
                                            endalign

                                            for (a > 0) in its domain. As you correctly state, the proof uses the fact that you integrate a non-negative function over a smaller region in the second-to-last inequality, not in the last inequality.






                                            share|cite|improve this answer

























                                              2














                                              The last step uses the fact that the function
                                              beginalign g : [a,infty) rightarrow [0, infty)\
                                              x mapsto x f_X(x)
                                              endalign

                                              is always larger than
                                              beginalign h : [a,infty) rightarrow [0, infty)\
                                              x mapsto a f_X(x)
                                              endalign

                                              for (a > 0) in its domain. As you correctly state, the proof uses the fact that you integrate a non-negative function over a smaller region in the second-to-last inequality, not in the last inequality.






                                              share|cite|improve this answer























                                                2












                                                2








                                                2






                                                The last step uses the fact that the function
                                                beginalign g : [a,infty) rightarrow [0, infty)\
                                                x mapsto x f_X(x)
                                                endalign

                                                is always larger than
                                                beginalign h : [a,infty) rightarrow [0, infty)\
                                                x mapsto a f_X(x)
                                                endalign

                                                for (a > 0) in its domain. As you correctly state, the proof uses the fact that you integrate a non-negative function over a smaller region in the second-to-last inequality, not in the last inequality.






                                                share|cite|improve this answer












                                                The last step uses the fact that the function
                                                beginalign g : [a,infty) rightarrow [0, infty)\
                                                x mapsto x f_X(x)
                                                endalign

                                                is always larger than
                                                beginalign h : [a,infty) rightarrow [0, infty)\
                                                x mapsto a f_X(x)
                                                endalign

                                                for (a > 0) in its domain. As you correctly state, the proof uses the fact that you integrate a non-negative function over a smaller region in the second-to-last inequality, not in the last inequality.







                                                share|cite|improve this answer












                                                share|cite|improve this answer



                                                share|cite|improve this answer










                                                answered Dec 13 at 9:40









                                                Jonathan

                                                16412




                                                16412





















                                                    2














                                                    No, there is a difference. Second to third step uses the fact that



                                                    $int_0^infty xf_X(x)dx = int_0^a xf_X(x)dx+int_a^infty xf_X(x)dx$



                                                    And



                                                    $int_0^a xf_X(x) dx>0$



                                                    Last step uses that $int_a^infty xf_X(x)dx>int_a^infty af_X(x)dx$, because $x>a$ in these limits of integration



                                                    Hope it is helpful






                                                    share|cite|improve this answer

























                                                      2














                                                      No, there is a difference. Second to third step uses the fact that



                                                      $int_0^infty xf_X(x)dx = int_0^a xf_X(x)dx+int_a^infty xf_X(x)dx$



                                                      And



                                                      $int_0^a xf_X(x) dx>0$



                                                      Last step uses that $int_a^infty xf_X(x)dx>int_a^infty af_X(x)dx$, because $x>a$ in these limits of integration



                                                      Hope it is helpful






                                                      share|cite|improve this answer























                                                        2












                                                        2








                                                        2






                                                        No, there is a difference. Second to third step uses the fact that



                                                        $int_0^infty xf_X(x)dx = int_0^a xf_X(x)dx+int_a^infty xf_X(x)dx$



                                                        And



                                                        $int_0^a xf_X(x) dx>0$



                                                        Last step uses that $int_a^infty xf_X(x)dx>int_a^infty af_X(x)dx$, because $x>a$ in these limits of integration



                                                        Hope it is helpful






                                                        share|cite|improve this answer












                                                        No, there is a difference. Second to third step uses the fact that



                                                        $int_0^infty xf_X(x)dx = int_0^a xf_X(x)dx+int_a^infty xf_X(x)dx$



                                                        And



                                                        $int_0^a xf_X(x) dx>0$



                                                        Last step uses that $int_a^infty xf_X(x)dx>int_a^infty af_X(x)dx$, because $x>a$ in these limits of integration



                                                        Hope it is helpful







                                                        share|cite|improve this answer












                                                        share|cite|improve this answer



                                                        share|cite|improve this answer










                                                        answered Dec 13 at 9:47









                                                        Martund

                                                        1,382212




                                                        1,382212



























                                                            draft saved

                                                            draft discarded
















































                                                            Thanks for contributing an answer to Mathematics Stack Exchange!


                                                            • Please be sure to answer the question. Provide details and share your research!

                                                            But avoid


                                                            • Asking for help, clarification, or responding to other answers.

                                                            • Making statements based on opinion; back them up with references or personal experience.

                                                            Use MathJax to format equations. MathJax reference.


                                                            To learn more, see our tips on writing great answers.





                                                            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                                            Please pay close attention to the following guidance:


                                                            • Please be sure to answer the question. Provide details and share your research!

                                                            But avoid


                                                            • Asking for help, clarification, or responding to other answers.

                                                            • Making statements based on opinion; back them up with references or personal experience.

                                                            To learn more, see our tips on writing great answers.




                                                            draft saved


                                                            draft discarded














                                                            StackExchange.ready(
                                                            function ()
                                                            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037798%2fderivation-of-markovs-inequality%23new-answer', 'question_page');

                                                            );

                                                            Post as a guest















                                                            Required, but never shown





















































                                                            Required, but never shown














                                                            Required, but never shown












                                                            Required, but never shown







                                                            Required, but never shown

































                                                            Required, but never shown














                                                            Required, but never shown












                                                            Required, but never shown







                                                            Required, but never shown






                                                            Popular posts from this blog

                                                            How to check contact read email or not when send email to Individual?

                                                            Displaying single band from multi-band raster using QGIS

                                                            How many registers does an x86_64 CPU actually have?