How to prove the following identity regarding Laplace transforms?

Multi tool use
Multi tool use

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
4
down vote

favorite
1












I tried solving it by integrating by parts but i was unsuccessful.




$$cal Lleft[int_0^xf(x-t)g(t) dtright]=F(p)G(p)$$











share|cite|improve this question



















  • 3




    Start from the right hand side.
    – Nosrati
    4 hours ago










  • @Nosrati i am getting two integrals multiplied together.how to bring them in single one ?
    – RockDock
    4 hours ago







  • 2




    by changing variables.
    – Nosrati
    4 hours ago














up vote
4
down vote

favorite
1












I tried solving it by integrating by parts but i was unsuccessful.




$$cal Lleft[int_0^xf(x-t)g(t) dtright]=F(p)G(p)$$











share|cite|improve this question



















  • 3




    Start from the right hand side.
    – Nosrati
    4 hours ago










  • @Nosrati i am getting two integrals multiplied together.how to bring them in single one ?
    – RockDock
    4 hours ago







  • 2




    by changing variables.
    – Nosrati
    4 hours ago












up vote
4
down vote

favorite
1









up vote
4
down vote

favorite
1






1





I tried solving it by integrating by parts but i was unsuccessful.




$$cal Lleft[int_0^xf(x-t)g(t) dtright]=F(p)G(p)$$











share|cite|improve this question















I tried solving it by integrating by parts but i was unsuccessful.




$$cal Lleft[int_0^xf(x-t)g(t) dtright]=F(p)G(p)$$








differential-equations laplace-transform






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 25 mins ago









Federico Poloni

2,4091325




2,4091325










asked 4 hours ago









RockDock

533




533







  • 3




    Start from the right hand side.
    – Nosrati
    4 hours ago










  • @Nosrati i am getting two integrals multiplied together.how to bring them in single one ?
    – RockDock
    4 hours ago







  • 2




    by changing variables.
    – Nosrati
    4 hours ago












  • 3




    Start from the right hand side.
    – Nosrati
    4 hours ago










  • @Nosrati i am getting two integrals multiplied together.how to bring them in single one ?
    – RockDock
    4 hours ago







  • 2




    by changing variables.
    – Nosrati
    4 hours ago







3




3




Start from the right hand side.
– Nosrati
4 hours ago




Start from the right hand side.
– Nosrati
4 hours ago












@Nosrati i am getting two integrals multiplied together.how to bring them in single one ?
– RockDock
4 hours ago





@Nosrati i am getting two integrals multiplied together.how to bring them in single one ?
– RockDock
4 hours ago





2




2




by changing variables.
– Nosrati
4 hours ago




by changing variables.
– Nosrati
4 hours ago










1 Answer
1






active

oldest

votes

















up vote
5
down vote



accepted










beginalign
F(p) G(p)
&= int_0^infty e^-puf(u) duint_0^infty e^-pvg(v) dv \
&= int_0^inftyint_0^infty e^-p(u+v)f(u)g(v) du dv ,,, , ,,, textu+v=t ,, , ,, textv=x\
&= int_0^inftyint_x^infty e^-ptf(t-x)g(x) dt dx ,, , ,, textchanging order of integration\
&= int_0^infty e^-ptBig[int_0^tf(t-x)g(x) dx Big] dt \
&= cal L(f*g)(t)
endalign






share|cite|improve this answer






















    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2983033%2fhow-to-prove-the-following-identity-regarding-laplace-transforms%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    5
    down vote



    accepted










    beginalign
    F(p) G(p)
    &= int_0^infty e^-puf(u) duint_0^infty e^-pvg(v) dv \
    &= int_0^inftyint_0^infty e^-p(u+v)f(u)g(v) du dv ,,, , ,,, textu+v=t ,, , ,, textv=x\
    &= int_0^inftyint_x^infty e^-ptf(t-x)g(x) dt dx ,, , ,, textchanging order of integration\
    &= int_0^infty e^-ptBig[int_0^tf(t-x)g(x) dx Big] dt \
    &= cal L(f*g)(t)
    endalign






    share|cite|improve this answer


























      up vote
      5
      down vote



      accepted










      beginalign
      F(p) G(p)
      &= int_0^infty e^-puf(u) duint_0^infty e^-pvg(v) dv \
      &= int_0^inftyint_0^infty e^-p(u+v)f(u)g(v) du dv ,,, , ,,, textu+v=t ,, , ,, textv=x\
      &= int_0^inftyint_x^infty e^-ptf(t-x)g(x) dt dx ,, , ,, textchanging order of integration\
      &= int_0^infty e^-ptBig[int_0^tf(t-x)g(x) dx Big] dt \
      &= cal L(f*g)(t)
      endalign






      share|cite|improve this answer
























        up vote
        5
        down vote



        accepted







        up vote
        5
        down vote



        accepted






        beginalign
        F(p) G(p)
        &= int_0^infty e^-puf(u) duint_0^infty e^-pvg(v) dv \
        &= int_0^inftyint_0^infty e^-p(u+v)f(u)g(v) du dv ,,, , ,,, textu+v=t ,, , ,, textv=x\
        &= int_0^inftyint_x^infty e^-ptf(t-x)g(x) dt dx ,, , ,, textchanging order of integration\
        &= int_0^infty e^-ptBig[int_0^tf(t-x)g(x) dx Big] dt \
        &= cal L(f*g)(t)
        endalign






        share|cite|improve this answer














        beginalign
        F(p) G(p)
        &= int_0^infty e^-puf(u) duint_0^infty e^-pvg(v) dv \
        &= int_0^inftyint_0^infty e^-p(u+v)f(u)g(v) du dv ,,, , ,,, textu+v=t ,, , ,, textv=x\
        &= int_0^inftyint_x^infty e^-ptf(t-x)g(x) dt dx ,, , ,, textchanging order of integration\
        &= int_0^infty e^-ptBig[int_0^tf(t-x)g(x) dx Big] dt \
        &= cal L(f*g)(t)
        endalign







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 2 hours ago

























        answered 4 hours ago









        Nosrati

        25k62052




        25k62052



























             

            draft saved


            draft discarded















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2983033%2fhow-to-prove-the-following-identity-regarding-laplace-transforms%23new-answer', 'question_page');

            );

            Post as a guest













































































            Oxwo99pn3VFdq2kk5l owFCLPXKDCY9bcPoIUL,iZ1cf TG,ho k8Qe
            DWH70pBYo,jRxRQclTgRMSbdVqWC0sS

            Popular posts from this blog

            How to check contact read email or not when send email to Individual?

            How many registers does an x86_64 CPU actually have?

            Displaying single band from multi-band raster using QGIS