How to prove the following identity regarding Laplace transforms?
Clash Royale CLAN TAG#URR8PPP
up vote
4
down vote
favorite
I tried solving it by integrating by parts but i was unsuccessful.
$$cal Lleft[int_0^xf(x-t)g(t) dtright]=F(p)G(p)$$
differential-equations laplace-transform
add a comment |Â
up vote
4
down vote
favorite
I tried solving it by integrating by parts but i was unsuccessful.
$$cal Lleft[int_0^xf(x-t)g(t) dtright]=F(p)G(p)$$
differential-equations laplace-transform
3
Start from the right hand side.
â Nosrati
4 hours ago
@Nosrati i am getting two integrals multiplied together.how to bring them in single one ?
â RockDock
4 hours ago
2
by changing variables.
â Nosrati
4 hours ago
add a comment |Â
up vote
4
down vote
favorite
up vote
4
down vote
favorite
I tried solving it by integrating by parts but i was unsuccessful.
$$cal Lleft[int_0^xf(x-t)g(t) dtright]=F(p)G(p)$$
differential-equations laplace-transform
I tried solving it by integrating by parts but i was unsuccessful.
$$cal Lleft[int_0^xf(x-t)g(t) dtright]=F(p)G(p)$$
differential-equations laplace-transform
differential-equations laplace-transform
edited 25 mins ago
Federico Poloni
2,4091325
2,4091325
asked 4 hours ago
RockDock
533
533
3
Start from the right hand side.
â Nosrati
4 hours ago
@Nosrati i am getting two integrals multiplied together.how to bring them in single one ?
â RockDock
4 hours ago
2
by changing variables.
â Nosrati
4 hours ago
add a comment |Â
3
Start from the right hand side.
â Nosrati
4 hours ago
@Nosrati i am getting two integrals multiplied together.how to bring them in single one ?
â RockDock
4 hours ago
2
by changing variables.
â Nosrati
4 hours ago
3
3
Start from the right hand side.
â Nosrati
4 hours ago
Start from the right hand side.
â Nosrati
4 hours ago
@Nosrati i am getting two integrals multiplied together.how to bring them in single one ?
â RockDock
4 hours ago
@Nosrati i am getting two integrals multiplied together.how to bring them in single one ?
â RockDock
4 hours ago
2
2
by changing variables.
â Nosrati
4 hours ago
by changing variables.
â Nosrati
4 hours ago
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
5
down vote
accepted
beginalign
F(p) G(p)
&= int_0^infty e^-puf(u) duint_0^infty e^-pvg(v) dv \
&= int_0^inftyint_0^infty e^-p(u+v)f(u)g(v) du dv ,,, , ,,, textu+v=t ,, , ,, textv=x\
&= int_0^inftyint_x^infty e^-ptf(t-x)g(x) dt dx ,, , ,, textchanging order of integration\
&= int_0^infty e^-ptBig[int_0^tf(t-x)g(x) dx Big] dt \
&= cal L(f*g)(t)
endalign
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
accepted
beginalign
F(p) G(p)
&= int_0^infty e^-puf(u) duint_0^infty e^-pvg(v) dv \
&= int_0^inftyint_0^infty e^-p(u+v)f(u)g(v) du dv ,,, , ,,, textu+v=t ,, , ,, textv=x\
&= int_0^inftyint_x^infty e^-ptf(t-x)g(x) dt dx ,, , ,, textchanging order of integration\
&= int_0^infty e^-ptBig[int_0^tf(t-x)g(x) dx Big] dt \
&= cal L(f*g)(t)
endalign
add a comment |Â
up vote
5
down vote
accepted
beginalign
F(p) G(p)
&= int_0^infty e^-puf(u) duint_0^infty e^-pvg(v) dv \
&= int_0^inftyint_0^infty e^-p(u+v)f(u)g(v) du dv ,,, , ,,, textu+v=t ,, , ,, textv=x\
&= int_0^inftyint_x^infty e^-ptf(t-x)g(x) dt dx ,, , ,, textchanging order of integration\
&= int_0^infty e^-ptBig[int_0^tf(t-x)g(x) dx Big] dt \
&= cal L(f*g)(t)
endalign
add a comment |Â
up vote
5
down vote
accepted
up vote
5
down vote
accepted
beginalign
F(p) G(p)
&= int_0^infty e^-puf(u) duint_0^infty e^-pvg(v) dv \
&= int_0^inftyint_0^infty e^-p(u+v)f(u)g(v) du dv ,,, , ,,, textu+v=t ,, , ,, textv=x\
&= int_0^inftyint_x^infty e^-ptf(t-x)g(x) dt dx ,, , ,, textchanging order of integration\
&= int_0^infty e^-ptBig[int_0^tf(t-x)g(x) dx Big] dt \
&= cal L(f*g)(t)
endalign
beginalign
F(p) G(p)
&= int_0^infty e^-puf(u) duint_0^infty e^-pvg(v) dv \
&= int_0^inftyint_0^infty e^-p(u+v)f(u)g(v) du dv ,,, , ,,, textu+v=t ,, , ,, textv=x\
&= int_0^inftyint_x^infty e^-ptf(t-x)g(x) dt dx ,, , ,, textchanging order of integration\
&= int_0^infty e^-ptBig[int_0^tf(t-x)g(x) dx Big] dt \
&= cal L(f*g)(t)
endalign
edited 2 hours ago
answered 4 hours ago
Nosrati
25k62052
25k62052
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2983033%2fhow-to-prove-the-following-identity-regarding-laplace-transforms%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
3
Start from the right hand side.
â Nosrati
4 hours ago
@Nosrati i am getting two integrals multiplied together.how to bring them in single one ?
â RockDock
4 hours ago
2
by changing variables.
â Nosrati
4 hours ago