Calculate the limit (Squeeze Theorem?)
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
I have to calculate the limit of this formula as $nto infty$.
$$a_n = frac1sqrtnbigl(frac1sqrtn+1+cdots+frac1sqrt2nbigl)$$
I tried the Squeeze Theorem, but I get something like this:
$$frac1sqrt2leftarrowfracnsqrt2n^2lefrac1sqrtnbigl(frac1sqrtn+1+cdots+frac1sqrt2nbigl) le fracnsqrtn^2+nto1$$
As you can see, the limits of two other sequences aren't the same. Can you give me some hints? Thank you in advance.
sequences-and-series
New contributor
add a comment |Â
up vote
1
down vote
favorite
I have to calculate the limit of this formula as $nto infty$.
$$a_n = frac1sqrtnbigl(frac1sqrtn+1+cdots+frac1sqrt2nbigl)$$
I tried the Squeeze Theorem, but I get something like this:
$$frac1sqrt2leftarrowfracnsqrt2n^2lefrac1sqrtnbigl(frac1sqrtn+1+cdots+frac1sqrt2nbigl) le fracnsqrtn^2+nto1$$
As you can see, the limits of two other sequences aren't the same. Can you give me some hints? Thank you in advance.
sequences-and-series
New contributor
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I have to calculate the limit of this formula as $nto infty$.
$$a_n = frac1sqrtnbigl(frac1sqrtn+1+cdots+frac1sqrt2nbigl)$$
I tried the Squeeze Theorem, but I get something like this:
$$frac1sqrt2leftarrowfracnsqrt2n^2lefrac1sqrtnbigl(frac1sqrtn+1+cdots+frac1sqrt2nbigl) le fracnsqrtn^2+nto1$$
As you can see, the limits of two other sequences aren't the same. Can you give me some hints? Thank you in advance.
sequences-and-series
New contributor
I have to calculate the limit of this formula as $nto infty$.
$$a_n = frac1sqrtnbigl(frac1sqrtn+1+cdots+frac1sqrt2nbigl)$$
I tried the Squeeze Theorem, but I get something like this:
$$frac1sqrt2leftarrowfracnsqrt2n^2lefrac1sqrtnbigl(frac1sqrtn+1+cdots+frac1sqrt2nbigl) le fracnsqrtn^2+nto1$$
As you can see, the limits of two other sequences aren't the same. Can you give me some hints? Thank you in advance.
sequences-and-series
sequences-and-series
New contributor
New contributor
New contributor
asked 2 hours ago
iforgotmypass
283
283
New contributor
New contributor
add a comment |Â
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
3
down vote
Rearrange it as
$$ frac1nleft(sqrtfracnn+1+sqrtfracnn+2+ldots+sqrtfracnn+1right) = frac1nsum_k=1^nfrac1sqrt1+frackn$$
which is a Riemann sum for
$$ int_0^1fracdxsqrt1+x=2sqrt2-2.$$
Since $frac1sqrt1+x$ is a convex function on $[0,1]$, the Hermite-Hadamard and Karamata's inequalities give us that $a_n_ngeq 1$ is an increasing sequence convergent to $2sqrt2-2$. Additionally it is not difficult to check that $a_n= 2sqrt2-2-Thetaleft(frac1nright)$ as $nto +infty$.
add a comment |Â
up vote
2
down vote
As an alternative by Stolz-Cesaro
$$fracb_nc_n = fracfrac1sqrtn+1+cdots+frac1sqrt2nsqrt n$$
$$fracb_n+1-b_nc_n+1-c_n = fracfrac1sqrt2n+2+frac1sqrt2n+1-frac1sqrtn+1sqrtn+1-sqrt n$$
and
$$fracfrac1sqrt2n+2+frac1sqrt2n+1-frac1sqrtn+1sqrtn+1-sqrt nfracsqrtn+1+sqrt nsqrtn+1+sqrt n=$$
$$fracsqrtn+1+sqrt nsqrt2n+2+fracsqrtn+1+sqrt nsqrt2n+1-fracsqrtn+1+sqrt nsqrtn+1tofrac4sqrt 2-2=2sqrt 2-2$$
add a comment |Â
up vote
0
down vote
for a decreasing function such as $1/sqrt x$ with $x$ positive, a simple picture shows
$$ int_a^b+1 ; f(x) ; dx < sum_k=a^b f(k) < int_a-1^b ; f(x) ; dx $$
$$ int_n+1^2n+1 ; frac1sqrt x ; dx < sum_k=n+1^2n frac1sqrt k < int_n^2n ; frac1sqrt x ; dx $$
getting there
$$ 2 sqrt 2n+1 - 2 sqrt n+1 < sum_k=n+1^2n frac1sqrt k < 2 sqrt 2n - 2 sqrt n $$
$$ 2 sqrt 2+frac1n - 2 sqrt 1+frac1n < frac1sqrt n sum_k=n+1^2n frac1sqrt k < 2 sqrt 2 - 2 sqrt 1 $$
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
Rearrange it as
$$ frac1nleft(sqrtfracnn+1+sqrtfracnn+2+ldots+sqrtfracnn+1right) = frac1nsum_k=1^nfrac1sqrt1+frackn$$
which is a Riemann sum for
$$ int_0^1fracdxsqrt1+x=2sqrt2-2.$$
Since $frac1sqrt1+x$ is a convex function on $[0,1]$, the Hermite-Hadamard and Karamata's inequalities give us that $a_n_ngeq 1$ is an increasing sequence convergent to $2sqrt2-2$. Additionally it is not difficult to check that $a_n= 2sqrt2-2-Thetaleft(frac1nright)$ as $nto +infty$.
add a comment |Â
up vote
3
down vote
Rearrange it as
$$ frac1nleft(sqrtfracnn+1+sqrtfracnn+2+ldots+sqrtfracnn+1right) = frac1nsum_k=1^nfrac1sqrt1+frackn$$
which is a Riemann sum for
$$ int_0^1fracdxsqrt1+x=2sqrt2-2.$$
Since $frac1sqrt1+x$ is a convex function on $[0,1]$, the Hermite-Hadamard and Karamata's inequalities give us that $a_n_ngeq 1$ is an increasing sequence convergent to $2sqrt2-2$. Additionally it is not difficult to check that $a_n= 2sqrt2-2-Thetaleft(frac1nright)$ as $nto +infty$.
add a comment |Â
up vote
3
down vote
up vote
3
down vote
Rearrange it as
$$ frac1nleft(sqrtfracnn+1+sqrtfracnn+2+ldots+sqrtfracnn+1right) = frac1nsum_k=1^nfrac1sqrt1+frackn$$
which is a Riemann sum for
$$ int_0^1fracdxsqrt1+x=2sqrt2-2.$$
Since $frac1sqrt1+x$ is a convex function on $[0,1]$, the Hermite-Hadamard and Karamata's inequalities give us that $a_n_ngeq 1$ is an increasing sequence convergent to $2sqrt2-2$. Additionally it is not difficult to check that $a_n= 2sqrt2-2-Thetaleft(frac1nright)$ as $nto +infty$.
Rearrange it as
$$ frac1nleft(sqrtfracnn+1+sqrtfracnn+2+ldots+sqrtfracnn+1right) = frac1nsum_k=1^nfrac1sqrt1+frackn$$
which is a Riemann sum for
$$ int_0^1fracdxsqrt1+x=2sqrt2-2.$$
Since $frac1sqrt1+x$ is a convex function on $[0,1]$, the Hermite-Hadamard and Karamata's inequalities give us that $a_n_ngeq 1$ is an increasing sequence convergent to $2sqrt2-2$. Additionally it is not difficult to check that $a_n= 2sqrt2-2-Thetaleft(frac1nright)$ as $nto +infty$.
edited 1 hour ago
answered 2 hours ago
Jack D'Aurizio
280k33272651
280k33272651
add a comment |Â
add a comment |Â
up vote
2
down vote
As an alternative by Stolz-Cesaro
$$fracb_nc_n = fracfrac1sqrtn+1+cdots+frac1sqrt2nsqrt n$$
$$fracb_n+1-b_nc_n+1-c_n = fracfrac1sqrt2n+2+frac1sqrt2n+1-frac1sqrtn+1sqrtn+1-sqrt n$$
and
$$fracfrac1sqrt2n+2+frac1sqrt2n+1-frac1sqrtn+1sqrtn+1-sqrt nfracsqrtn+1+sqrt nsqrtn+1+sqrt n=$$
$$fracsqrtn+1+sqrt nsqrt2n+2+fracsqrtn+1+sqrt nsqrt2n+1-fracsqrtn+1+sqrt nsqrtn+1tofrac4sqrt 2-2=2sqrt 2-2$$
add a comment |Â
up vote
2
down vote
As an alternative by Stolz-Cesaro
$$fracb_nc_n = fracfrac1sqrtn+1+cdots+frac1sqrt2nsqrt n$$
$$fracb_n+1-b_nc_n+1-c_n = fracfrac1sqrt2n+2+frac1sqrt2n+1-frac1sqrtn+1sqrtn+1-sqrt n$$
and
$$fracfrac1sqrt2n+2+frac1sqrt2n+1-frac1sqrtn+1sqrtn+1-sqrt nfracsqrtn+1+sqrt nsqrtn+1+sqrt n=$$
$$fracsqrtn+1+sqrt nsqrt2n+2+fracsqrtn+1+sqrt nsqrt2n+1-fracsqrtn+1+sqrt nsqrtn+1tofrac4sqrt 2-2=2sqrt 2-2$$
add a comment |Â
up vote
2
down vote
up vote
2
down vote
As an alternative by Stolz-Cesaro
$$fracb_nc_n = fracfrac1sqrtn+1+cdots+frac1sqrt2nsqrt n$$
$$fracb_n+1-b_nc_n+1-c_n = fracfrac1sqrt2n+2+frac1sqrt2n+1-frac1sqrtn+1sqrtn+1-sqrt n$$
and
$$fracfrac1sqrt2n+2+frac1sqrt2n+1-frac1sqrtn+1sqrtn+1-sqrt nfracsqrtn+1+sqrt nsqrtn+1+sqrt n=$$
$$fracsqrtn+1+sqrt nsqrt2n+2+fracsqrtn+1+sqrt nsqrt2n+1-fracsqrtn+1+sqrt nsqrtn+1tofrac4sqrt 2-2=2sqrt 2-2$$
As an alternative by Stolz-Cesaro
$$fracb_nc_n = fracfrac1sqrtn+1+cdots+frac1sqrt2nsqrt n$$
$$fracb_n+1-b_nc_n+1-c_n = fracfrac1sqrt2n+2+frac1sqrt2n+1-frac1sqrtn+1sqrtn+1-sqrt n$$
and
$$fracfrac1sqrt2n+2+frac1sqrt2n+1-frac1sqrtn+1sqrtn+1-sqrt nfracsqrtn+1+sqrt nsqrtn+1+sqrt n=$$
$$fracsqrtn+1+sqrt nsqrt2n+2+fracsqrtn+1+sqrt nsqrt2n+1-fracsqrtn+1+sqrt nsqrtn+1tofrac4sqrt 2-2=2sqrt 2-2$$
answered 2 hours ago
gimusi
81.3k74090
81.3k74090
add a comment |Â
add a comment |Â
up vote
0
down vote
for a decreasing function such as $1/sqrt x$ with $x$ positive, a simple picture shows
$$ int_a^b+1 ; f(x) ; dx < sum_k=a^b f(k) < int_a-1^b ; f(x) ; dx $$
$$ int_n+1^2n+1 ; frac1sqrt x ; dx < sum_k=n+1^2n frac1sqrt k < int_n^2n ; frac1sqrt x ; dx $$
getting there
$$ 2 sqrt 2n+1 - 2 sqrt n+1 < sum_k=n+1^2n frac1sqrt k < 2 sqrt 2n - 2 sqrt n $$
$$ 2 sqrt 2+frac1n - 2 sqrt 1+frac1n < frac1sqrt n sum_k=n+1^2n frac1sqrt k < 2 sqrt 2 - 2 sqrt 1 $$
add a comment |Â
up vote
0
down vote
for a decreasing function such as $1/sqrt x$ with $x$ positive, a simple picture shows
$$ int_a^b+1 ; f(x) ; dx < sum_k=a^b f(k) < int_a-1^b ; f(x) ; dx $$
$$ int_n+1^2n+1 ; frac1sqrt x ; dx < sum_k=n+1^2n frac1sqrt k < int_n^2n ; frac1sqrt x ; dx $$
getting there
$$ 2 sqrt 2n+1 - 2 sqrt n+1 < sum_k=n+1^2n frac1sqrt k < 2 sqrt 2n - 2 sqrt n $$
$$ 2 sqrt 2+frac1n - 2 sqrt 1+frac1n < frac1sqrt n sum_k=n+1^2n frac1sqrt k < 2 sqrt 2 - 2 sqrt 1 $$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
for a decreasing function such as $1/sqrt x$ with $x$ positive, a simple picture shows
$$ int_a^b+1 ; f(x) ; dx < sum_k=a^b f(k) < int_a-1^b ; f(x) ; dx $$
$$ int_n+1^2n+1 ; frac1sqrt x ; dx < sum_k=n+1^2n frac1sqrt k < int_n^2n ; frac1sqrt x ; dx $$
getting there
$$ 2 sqrt 2n+1 - 2 sqrt n+1 < sum_k=n+1^2n frac1sqrt k < 2 sqrt 2n - 2 sqrt n $$
$$ 2 sqrt 2+frac1n - 2 sqrt 1+frac1n < frac1sqrt n sum_k=n+1^2n frac1sqrt k < 2 sqrt 2 - 2 sqrt 1 $$
for a decreasing function such as $1/sqrt x$ with $x$ positive, a simple picture shows
$$ int_a^b+1 ; f(x) ; dx < sum_k=a^b f(k) < int_a-1^b ; f(x) ; dx $$
$$ int_n+1^2n+1 ; frac1sqrt x ; dx < sum_k=n+1^2n frac1sqrt k < int_n^2n ; frac1sqrt x ; dx $$
getting there
$$ 2 sqrt 2n+1 - 2 sqrt n+1 < sum_k=n+1^2n frac1sqrt k < 2 sqrt 2n - 2 sqrt n $$
$$ 2 sqrt 2+frac1n - 2 sqrt 1+frac1n < frac1sqrt n sum_k=n+1^2n frac1sqrt k < 2 sqrt 2 - 2 sqrt 1 $$
edited 56 mins ago
answered 1 hour ago
Will Jagy
99.5k597198
99.5k597198
add a comment |Â
add a comment |Â
iforgotmypass is a new contributor. Be nice, and check out our Code of Conduct.
iforgotmypass is a new contributor. Be nice, and check out our Code of Conduct.
iforgotmypass is a new contributor. Be nice, and check out our Code of Conduct.
iforgotmypass is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2983519%2fcalculate-the-limit-squeeze-theorem%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password