Does every point in a metric space have another point a rational distance away?

Multi tool use
Multi tool use

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












Is the following statement true or false?




Let $(X,d)$ be a metric space. Then for every $x in X$, there exists $y in X$ such that $d(x, y)$ is a non-zero rational number.




I'm not able to find a counter example.










share|cite|improve this question



















  • 2




    What have you tried for finding counterexamples?
    – Dark Malthorp
    1 hour ago







  • 4




    Think about the discrete metric, but choose an irrational number instead of $1$.
    – Richard
    1 hour ago










  • @Richard good logics
    – jasmine
    1 hour ago










  • @NateEldredge okkss
    – jasmine
    1 hour ago














up vote
1
down vote

favorite












Is the following statement true or false?




Let $(X,d)$ be a metric space. Then for every $x in X$, there exists $y in X$ such that $d(x, y)$ is a non-zero rational number.




I'm not able to find a counter example.










share|cite|improve this question



















  • 2




    What have you tried for finding counterexamples?
    – Dark Malthorp
    1 hour ago







  • 4




    Think about the discrete metric, but choose an irrational number instead of $1$.
    – Richard
    1 hour ago










  • @Richard good logics
    – jasmine
    1 hour ago










  • @NateEldredge okkss
    – jasmine
    1 hour ago












up vote
1
down vote

favorite









up vote
1
down vote

favorite











Is the following statement true or false?




Let $(X,d)$ be a metric space. Then for every $x in X$, there exists $y in X$ such that $d(x, y)$ is a non-zero rational number.




I'm not able to find a counter example.










share|cite|improve this question















Is the following statement true or false?




Let $(X,d)$ be a metric space. Then for every $x in X$, there exists $y in X$ such that $d(x, y)$ is a non-zero rational number.




I'm not able to find a counter example.







general-topology metric-spaces






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 54 mins ago









Nate Eldredge

61.1k579165




61.1k579165










asked 1 hour ago









jasmine

1,258314




1,258314







  • 2




    What have you tried for finding counterexamples?
    – Dark Malthorp
    1 hour ago







  • 4




    Think about the discrete metric, but choose an irrational number instead of $1$.
    – Richard
    1 hour ago










  • @Richard good logics
    – jasmine
    1 hour ago










  • @NateEldredge okkss
    – jasmine
    1 hour ago












  • 2




    What have you tried for finding counterexamples?
    – Dark Malthorp
    1 hour ago







  • 4




    Think about the discrete metric, but choose an irrational number instead of $1$.
    – Richard
    1 hour ago










  • @Richard good logics
    – jasmine
    1 hour ago










  • @NateEldredge okkss
    – jasmine
    1 hour ago







2




2




What have you tried for finding counterexamples?
– Dark Malthorp
1 hour ago





What have you tried for finding counterexamples?
– Dark Malthorp
1 hour ago





4




4




Think about the discrete metric, but choose an irrational number instead of $1$.
– Richard
1 hour ago




Think about the discrete metric, but choose an irrational number instead of $1$.
– Richard
1 hour ago












@Richard good logics
– jasmine
1 hour ago




@Richard good logics
– jasmine
1 hour ago












@NateEldredge okkss
– jasmine
1 hour ago




@NateEldredge okkss
– jasmine
1 hour ago










3 Answers
3






active

oldest

votes

















up vote
4
down vote



accepted










False. Take $X=mathbbR$ and $d(x,y)=pi$ for $xneq y$.






share|cite|improve this answer
















  • 2




    Alternatively, take $X = 0$ with trivial metric.
    – ConMan
    1 hour ago

















up vote
2
down vote













Sometimes extreme cases are a good source of counterexamples. Consider the metric space on a set of one element, $(star, d)$, with $d(star, star)=0$. Clearly for $x=star$, there is no $y$ such that $d(star, y)$ is non zero.






share|cite|improve this answer



























    up vote
    2
    down vote













    Here are some examples that are subsets of $mathbbR$ (or $mathbbR^n$), which are counterexamples if $d$ is taken to be the Euclidean metric.



    • The two-point set $0, sqrt2$.


    • Take a Vitali set in $mathbbR$. By construction, the distance between any two points is irrational.


    • Take any continuous probability distribution on $mathbbR^n$ (e.g. uniform in a region, Gaussian, etc), and choose a finite or countable number of points $X_1, X_2, dots$ independently according to this distribution. With probability one, the resulting set has no two points that are a rational (Euclidean) distance apart. (For any given pair $X_i, X_j$, there is probability zero that $|X_i - X_j|$ is rational. There are a countable number of pairs, so by countable additivity, there is probability zero that there exists a pair a rational distance apart.)






    share|cite|improve this answer






















    • Very clever example.
      – Matt Samuel
      38 mins ago










    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2990689%2fdoes-every-point-in-a-metric-space-have-another-point-a-rational-distance-away%23new-answer', 'question_page');

    );

    Post as a guest






























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    4
    down vote



    accepted










    False. Take $X=mathbbR$ and $d(x,y)=pi$ for $xneq y$.






    share|cite|improve this answer
















    • 2




      Alternatively, take $X = 0$ with trivial metric.
      – ConMan
      1 hour ago














    up vote
    4
    down vote



    accepted










    False. Take $X=mathbbR$ and $d(x,y)=pi$ for $xneq y$.






    share|cite|improve this answer
















    • 2




      Alternatively, take $X = 0$ with trivial metric.
      – ConMan
      1 hour ago












    up vote
    4
    down vote



    accepted







    up vote
    4
    down vote



    accepted






    False. Take $X=mathbbR$ and $d(x,y)=pi$ for $xneq y$.






    share|cite|improve this answer












    False. Take $X=mathbbR$ and $d(x,y)=pi$ for $xneq y$.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 1 hour ago









    Noah Riggenbach

    63716




    63716







    • 2




      Alternatively, take $X = 0$ with trivial metric.
      – ConMan
      1 hour ago












    • 2




      Alternatively, take $X = 0$ with trivial metric.
      – ConMan
      1 hour ago







    2




    2




    Alternatively, take $X = 0$ with trivial metric.
    – ConMan
    1 hour ago




    Alternatively, take $X = 0$ with trivial metric.
    – ConMan
    1 hour ago










    up vote
    2
    down vote













    Sometimes extreme cases are a good source of counterexamples. Consider the metric space on a set of one element, $(star, d)$, with $d(star, star)=0$. Clearly for $x=star$, there is no $y$ such that $d(star, y)$ is non zero.






    share|cite|improve this answer
























      up vote
      2
      down vote













      Sometimes extreme cases are a good source of counterexamples. Consider the metric space on a set of one element, $(star, d)$, with $d(star, star)=0$. Clearly for $x=star$, there is no $y$ such that $d(star, y)$ is non zero.






      share|cite|improve this answer






















        up vote
        2
        down vote










        up vote
        2
        down vote









        Sometimes extreme cases are a good source of counterexamples. Consider the metric space on a set of one element, $(star, d)$, with $d(star, star)=0$. Clearly for $x=star$, there is no $y$ such that $d(star, y)$ is non zero.






        share|cite|improve this answer












        Sometimes extreme cases are a good source of counterexamples. Consider the metric space on a set of one element, $(star, d)$, with $d(star, star)=0$. Clearly for $x=star$, there is no $y$ such that $d(star, y)$ is non zero.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 1 hour ago









        Mjiig

        34727




        34727




















            up vote
            2
            down vote













            Here are some examples that are subsets of $mathbbR$ (or $mathbbR^n$), which are counterexamples if $d$ is taken to be the Euclidean metric.



            • The two-point set $0, sqrt2$.


            • Take a Vitali set in $mathbbR$. By construction, the distance between any two points is irrational.


            • Take any continuous probability distribution on $mathbbR^n$ (e.g. uniform in a region, Gaussian, etc), and choose a finite or countable number of points $X_1, X_2, dots$ independently according to this distribution. With probability one, the resulting set has no two points that are a rational (Euclidean) distance apart. (For any given pair $X_i, X_j$, there is probability zero that $|X_i - X_j|$ is rational. There are a countable number of pairs, so by countable additivity, there is probability zero that there exists a pair a rational distance apart.)






            share|cite|improve this answer






















            • Very clever example.
              – Matt Samuel
              38 mins ago














            up vote
            2
            down vote













            Here are some examples that are subsets of $mathbbR$ (or $mathbbR^n$), which are counterexamples if $d$ is taken to be the Euclidean metric.



            • The two-point set $0, sqrt2$.


            • Take a Vitali set in $mathbbR$. By construction, the distance between any two points is irrational.


            • Take any continuous probability distribution on $mathbbR^n$ (e.g. uniform in a region, Gaussian, etc), and choose a finite or countable number of points $X_1, X_2, dots$ independently according to this distribution. With probability one, the resulting set has no two points that are a rational (Euclidean) distance apart. (For any given pair $X_i, X_j$, there is probability zero that $|X_i - X_j|$ is rational. There are a countable number of pairs, so by countable additivity, there is probability zero that there exists a pair a rational distance apart.)






            share|cite|improve this answer






















            • Very clever example.
              – Matt Samuel
              38 mins ago












            up vote
            2
            down vote










            up vote
            2
            down vote









            Here are some examples that are subsets of $mathbbR$ (or $mathbbR^n$), which are counterexamples if $d$ is taken to be the Euclidean metric.



            • The two-point set $0, sqrt2$.


            • Take a Vitali set in $mathbbR$. By construction, the distance between any two points is irrational.


            • Take any continuous probability distribution on $mathbbR^n$ (e.g. uniform in a region, Gaussian, etc), and choose a finite or countable number of points $X_1, X_2, dots$ independently according to this distribution. With probability one, the resulting set has no two points that are a rational (Euclidean) distance apart. (For any given pair $X_i, X_j$, there is probability zero that $|X_i - X_j|$ is rational. There are a countable number of pairs, so by countable additivity, there is probability zero that there exists a pair a rational distance apart.)






            share|cite|improve this answer














            Here are some examples that are subsets of $mathbbR$ (or $mathbbR^n$), which are counterexamples if $d$ is taken to be the Euclidean metric.



            • The two-point set $0, sqrt2$.


            • Take a Vitali set in $mathbbR$. By construction, the distance between any two points is irrational.


            • Take any continuous probability distribution on $mathbbR^n$ (e.g. uniform in a region, Gaussian, etc), and choose a finite or countable number of points $X_1, X_2, dots$ independently according to this distribution. With probability one, the resulting set has no two points that are a rational (Euclidean) distance apart. (For any given pair $X_i, X_j$, there is probability zero that $|X_i - X_j|$ is rational. There are a countable number of pairs, so by countable additivity, there is probability zero that there exists a pair a rational distance apart.)







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 27 mins ago

























            answered 1 hour ago









            Nate Eldredge

            61.1k579165




            61.1k579165











            • Very clever example.
              – Matt Samuel
              38 mins ago
















            • Very clever example.
              – Matt Samuel
              38 mins ago















            Very clever example.
            – Matt Samuel
            38 mins ago




            Very clever example.
            – Matt Samuel
            38 mins ago

















             

            draft saved


            draft discarded















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2990689%2fdoes-every-point-in-a-metric-space-have-another-point-a-rational-distance-away%23new-answer', 'question_page');

            );

            Post as a guest













































































            CHsp,Tclr,a2H uBIL,VOe Ey29Y,M0gvKZoAVxE I,HPbLh1uU,Kh9AT9XQA2vWFkzWdwRs,rX6c3sCBx twKr2cse8WAt,tJLbq
            eaCJ,sucJH9V2IUK4ZpKeQ NMt,fMuD I0Xz,ehBCp

            Popular posts from this blog

            How to check contact read email or not when send email to Individual?

            How many registers does an x86_64 CPU actually have?

            Displaying single band from multi-band raster using QGIS