Serre's remark on group algebras and related questions

Multi tool use
Multi tool use

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
26
down vote

favorite
6












I've recently heard about an idea of Serre that for each finite group $G$ there exists a group scheme $X$ such that for each field $K$ the group $X(K)$ is naturally isomorphic to the unit group of $K[G]$. Unfortunately, the article where this fact was mentioned gave no reference, so I ask you if you know how to construct such a scheme. Of course, an interesting question would be: what about a set of $R$-points of $X$, where $R$ is a ring, how is it related to $R[G]$?



And can this be generalized somehow to arbitrary groups? In the form given above it sounds not really possible as for $K[mathbb Z]$ the group of units is isomorphic to $K^*times mathbb Z$ and one can hardly imagine a group scheme whose group of $K$-points is isomorphic to $mathbb Z$.



By the way, why there is no group scheme whose group of points is isomorphic to $mathbb Z$? Or it exists?










share|cite|improve this question

























    up vote
    26
    down vote

    favorite
    6












    I've recently heard about an idea of Serre that for each finite group $G$ there exists a group scheme $X$ such that for each field $K$ the group $X(K)$ is naturally isomorphic to the unit group of $K[G]$. Unfortunately, the article where this fact was mentioned gave no reference, so I ask you if you know how to construct such a scheme. Of course, an interesting question would be: what about a set of $R$-points of $X$, where $R$ is a ring, how is it related to $R[G]$?



    And can this be generalized somehow to arbitrary groups? In the form given above it sounds not really possible as for $K[mathbb Z]$ the group of units is isomorphic to $K^*times mathbb Z$ and one can hardly imagine a group scheme whose group of $K$-points is isomorphic to $mathbb Z$.



    By the way, why there is no group scheme whose group of points is isomorphic to $mathbb Z$? Or it exists?










    share|cite|improve this question























      up vote
      26
      down vote

      favorite
      6









      up vote
      26
      down vote

      favorite
      6






      6





      I've recently heard about an idea of Serre that for each finite group $G$ there exists a group scheme $X$ such that for each field $K$ the group $X(K)$ is naturally isomorphic to the unit group of $K[G]$. Unfortunately, the article where this fact was mentioned gave no reference, so I ask you if you know how to construct such a scheme. Of course, an interesting question would be: what about a set of $R$-points of $X$, where $R$ is a ring, how is it related to $R[G]$?



      And can this be generalized somehow to arbitrary groups? In the form given above it sounds not really possible as for $K[mathbb Z]$ the group of units is isomorphic to $K^*times mathbb Z$ and one can hardly imagine a group scheme whose group of $K$-points is isomorphic to $mathbb Z$.



      By the way, why there is no group scheme whose group of points is isomorphic to $mathbb Z$? Or it exists?










      share|cite|improve this question













      I've recently heard about an idea of Serre that for each finite group $G$ there exists a group scheme $X$ such that for each field $K$ the group $X(K)$ is naturally isomorphic to the unit group of $K[G]$. Unfortunately, the article where this fact was mentioned gave no reference, so I ask you if you know how to construct such a scheme. Of course, an interesting question would be: what about a set of $R$-points of $X$, where $R$ is a ring, how is it related to $R[G]$?



      And can this be generalized somehow to arbitrary groups? In the form given above it sounds not really possible as for $K[mathbb Z]$ the group of units is isomorphic to $K^*times mathbb Z$ and one can hardly imagine a group scheme whose group of $K$-points is isomorphic to $mathbb Z$.



      By the way, why there is no group scheme whose group of points is isomorphic to $mathbb Z$? Or it exists?







      ag.algebraic-geometry gr.group-theory group-schemes






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Sep 11 at 0:24









      Anna Abasheva

      591313




      591313




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          25
          down vote



          accepted










          It's fairly easy to do this for finite groups. In fact, the functor $R mapsto R[G]$ is naturally representable by a ring scheme: the underlying set functor is represented by $mathbb A^n$ where $n = |G|$, and the ring structure comes from the functor of points $R mapsto R[G]$. Write $Y$ for this ring scheme (say over $operatornameSpec mathbb Z$).



          Now the unit group can be constructed as the closed subset $V subseteq Y times Y$ of pairs $(x,y)$ such that $xy = 1$. It is closed because it is the pullback of the diagram
          $$beginarraycccV & to & Y times Y\downarrow & & downarrow \ 1 & hookrightarrow & Yendarray,$$
          where the right vertical map is the multiplication morphism on $Y$. This shows that $R mapsto R[G]^times$ is representable. It naturally becomes a group scheme, again by the functor of points point of view. $square$



          In the infinite case, this construction doesn't work, because the functor $R mapsto R[G]$ is not represented by $mathbb A^G$ (the latter represents the infinite direct product $R mapsto R^G$, not the direct sum $R mapsto R^(G)$). I have no idea whether the functor $R mapsto R^(G)$ (equivalently, the sheaf $mathcal O^(G)$) is representable, but I think it might not be.



          On the other hand, in the example you give of $G = mathbb Z$, the functor on fields
          $$K mapsto K[x,x^-1]^times = K^times times mathbb Z$$
          is representable by $coprod_i in mathbb Z mathbb G_m$, but this does not represent the functor $R mapsto R[x,x^-1]^times$ on rings for multiple reasons. Indeed, it is no longer true that $R[x,x^-1]^times = R^times times mathbb Z$ if $R$ is non-reduced, nor does $coprod mathbb G_m$ represent $R mapsto R^times times mathbb Z$ if $operatornameSpec R$ is disconnected. These problems do not cancel out, as can already be seen by taking $R = k[varepsilon]/(varepsilon^2)$.






          share|cite|improve this answer




















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "504"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f310291%2fserres-remark-on-group-algebras-and-related-questions%23new-answer', 'question_page');

            );

            Post as a guest






























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            25
            down vote



            accepted










            It's fairly easy to do this for finite groups. In fact, the functor $R mapsto R[G]$ is naturally representable by a ring scheme: the underlying set functor is represented by $mathbb A^n$ where $n = |G|$, and the ring structure comes from the functor of points $R mapsto R[G]$. Write $Y$ for this ring scheme (say over $operatornameSpec mathbb Z$).



            Now the unit group can be constructed as the closed subset $V subseteq Y times Y$ of pairs $(x,y)$ such that $xy = 1$. It is closed because it is the pullback of the diagram
            $$beginarraycccV & to & Y times Y\downarrow & & downarrow \ 1 & hookrightarrow & Yendarray,$$
            where the right vertical map is the multiplication morphism on $Y$. This shows that $R mapsto R[G]^times$ is representable. It naturally becomes a group scheme, again by the functor of points point of view. $square$



            In the infinite case, this construction doesn't work, because the functor $R mapsto R[G]$ is not represented by $mathbb A^G$ (the latter represents the infinite direct product $R mapsto R^G$, not the direct sum $R mapsto R^(G)$). I have no idea whether the functor $R mapsto R^(G)$ (equivalently, the sheaf $mathcal O^(G)$) is representable, but I think it might not be.



            On the other hand, in the example you give of $G = mathbb Z$, the functor on fields
            $$K mapsto K[x,x^-1]^times = K^times times mathbb Z$$
            is representable by $coprod_i in mathbb Z mathbb G_m$, but this does not represent the functor $R mapsto R[x,x^-1]^times$ on rings for multiple reasons. Indeed, it is no longer true that $R[x,x^-1]^times = R^times times mathbb Z$ if $R$ is non-reduced, nor does $coprod mathbb G_m$ represent $R mapsto R^times times mathbb Z$ if $operatornameSpec R$ is disconnected. These problems do not cancel out, as can already be seen by taking $R = k[varepsilon]/(varepsilon^2)$.






            share|cite|improve this answer
























              up vote
              25
              down vote



              accepted










              It's fairly easy to do this for finite groups. In fact, the functor $R mapsto R[G]$ is naturally representable by a ring scheme: the underlying set functor is represented by $mathbb A^n$ where $n = |G|$, and the ring structure comes from the functor of points $R mapsto R[G]$. Write $Y$ for this ring scheme (say over $operatornameSpec mathbb Z$).



              Now the unit group can be constructed as the closed subset $V subseteq Y times Y$ of pairs $(x,y)$ such that $xy = 1$. It is closed because it is the pullback of the diagram
              $$beginarraycccV & to & Y times Y\downarrow & & downarrow \ 1 & hookrightarrow & Yendarray,$$
              where the right vertical map is the multiplication morphism on $Y$. This shows that $R mapsto R[G]^times$ is representable. It naturally becomes a group scheme, again by the functor of points point of view. $square$



              In the infinite case, this construction doesn't work, because the functor $R mapsto R[G]$ is not represented by $mathbb A^G$ (the latter represents the infinite direct product $R mapsto R^G$, not the direct sum $R mapsto R^(G)$). I have no idea whether the functor $R mapsto R^(G)$ (equivalently, the sheaf $mathcal O^(G)$) is representable, but I think it might not be.



              On the other hand, in the example you give of $G = mathbb Z$, the functor on fields
              $$K mapsto K[x,x^-1]^times = K^times times mathbb Z$$
              is representable by $coprod_i in mathbb Z mathbb G_m$, but this does not represent the functor $R mapsto R[x,x^-1]^times$ on rings for multiple reasons. Indeed, it is no longer true that $R[x,x^-1]^times = R^times times mathbb Z$ if $R$ is non-reduced, nor does $coprod mathbb G_m$ represent $R mapsto R^times times mathbb Z$ if $operatornameSpec R$ is disconnected. These problems do not cancel out, as can already be seen by taking $R = k[varepsilon]/(varepsilon^2)$.






              share|cite|improve this answer






















                up vote
                25
                down vote



                accepted







                up vote
                25
                down vote



                accepted






                It's fairly easy to do this for finite groups. In fact, the functor $R mapsto R[G]$ is naturally representable by a ring scheme: the underlying set functor is represented by $mathbb A^n$ where $n = |G|$, and the ring structure comes from the functor of points $R mapsto R[G]$. Write $Y$ for this ring scheme (say over $operatornameSpec mathbb Z$).



                Now the unit group can be constructed as the closed subset $V subseteq Y times Y$ of pairs $(x,y)$ such that $xy = 1$. It is closed because it is the pullback of the diagram
                $$beginarraycccV & to & Y times Y\downarrow & & downarrow \ 1 & hookrightarrow & Yendarray,$$
                where the right vertical map is the multiplication morphism on $Y$. This shows that $R mapsto R[G]^times$ is representable. It naturally becomes a group scheme, again by the functor of points point of view. $square$



                In the infinite case, this construction doesn't work, because the functor $R mapsto R[G]$ is not represented by $mathbb A^G$ (the latter represents the infinite direct product $R mapsto R^G$, not the direct sum $R mapsto R^(G)$). I have no idea whether the functor $R mapsto R^(G)$ (equivalently, the sheaf $mathcal O^(G)$) is representable, but I think it might not be.



                On the other hand, in the example you give of $G = mathbb Z$, the functor on fields
                $$K mapsto K[x,x^-1]^times = K^times times mathbb Z$$
                is representable by $coprod_i in mathbb Z mathbb G_m$, but this does not represent the functor $R mapsto R[x,x^-1]^times$ on rings for multiple reasons. Indeed, it is no longer true that $R[x,x^-1]^times = R^times times mathbb Z$ if $R$ is non-reduced, nor does $coprod mathbb G_m$ represent $R mapsto R^times times mathbb Z$ if $operatornameSpec R$ is disconnected. These problems do not cancel out, as can already be seen by taking $R = k[varepsilon]/(varepsilon^2)$.






                share|cite|improve this answer












                It's fairly easy to do this for finite groups. In fact, the functor $R mapsto R[G]$ is naturally representable by a ring scheme: the underlying set functor is represented by $mathbb A^n$ where $n = |G|$, and the ring structure comes from the functor of points $R mapsto R[G]$. Write $Y$ for this ring scheme (say over $operatornameSpec mathbb Z$).



                Now the unit group can be constructed as the closed subset $V subseteq Y times Y$ of pairs $(x,y)$ such that $xy = 1$. It is closed because it is the pullback of the diagram
                $$beginarraycccV & to & Y times Y\downarrow & & downarrow \ 1 & hookrightarrow & Yendarray,$$
                where the right vertical map is the multiplication morphism on $Y$. This shows that $R mapsto R[G]^times$ is representable. It naturally becomes a group scheme, again by the functor of points point of view. $square$



                In the infinite case, this construction doesn't work, because the functor $R mapsto R[G]$ is not represented by $mathbb A^G$ (the latter represents the infinite direct product $R mapsto R^G$, not the direct sum $R mapsto R^(G)$). I have no idea whether the functor $R mapsto R^(G)$ (equivalently, the sheaf $mathcal O^(G)$) is representable, but I think it might not be.



                On the other hand, in the example you give of $G = mathbb Z$, the functor on fields
                $$K mapsto K[x,x^-1]^times = K^times times mathbb Z$$
                is representable by $coprod_i in mathbb Z mathbb G_m$, but this does not represent the functor $R mapsto R[x,x^-1]^times$ on rings for multiple reasons. Indeed, it is no longer true that $R[x,x^-1]^times = R^times times mathbb Z$ if $R$ is non-reduced, nor does $coprod mathbb G_m$ represent $R mapsto R^times times mathbb Z$ if $operatornameSpec R$ is disconnected. These problems do not cancel out, as can already be seen by taking $R = k[varepsilon]/(varepsilon^2)$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Sep 11 at 4:22









                R. van Dobben de Bruyn

                9,20122757




                9,20122757



























                     

                    draft saved


                    draft discarded















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f310291%2fserres-remark-on-group-algebras-and-related-questions%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    sK,TZgR1t9kYycKhC
                    mXkM9a,VZLNNUkZ0XCIbhps8C MPJF6LE0PgZG1dC,GgFL thY NFSNIx1SAR VNrG,C,QQ1pIu3E

                    Popular posts from this blog

                    How to check contact read email or not when send email to Individual?

                    How many registers does an x86_64 CPU actually have?

                    Displaying single band from multi-band raster using QGIS