(Euclidean) open orbit in an irreducible real algebraic set
Clash Royale CLAN TAG#URR8PPP
up vote
5
down vote
favorite
Let $tau:GL(n,mathbbR) rightarrow GL(V)$ be a rational representation of the general linear group of degree $n$ on a finite-dimensional real vector space $V$. Let $C$ be an irreducible real algebraic set in $V$ such that the action of $GL(n,mathbbR)$ on $V$ induced by $tau$ leaves the set $C$ invariant.
We endow $C$ with the subspace topology inherited from (Hausdorf) Euclidean topology of $V$. Supose there is a point $vin C$ such that the orbit $GL(n,mathbbR)â v$ is an open subset of $C$.
My questions is: is it true that the orbit $GL(n,mathbbR)â v$ must be a Zariski-open subset of $C$?
ag.algebraic-geometry algebraic-groups group-actions real-algebraic-geometry
add a comment |Â
up vote
5
down vote
favorite
Let $tau:GL(n,mathbbR) rightarrow GL(V)$ be a rational representation of the general linear group of degree $n$ on a finite-dimensional real vector space $V$. Let $C$ be an irreducible real algebraic set in $V$ such that the action of $GL(n,mathbbR)$ on $V$ induced by $tau$ leaves the set $C$ invariant.
We endow $C$ with the subspace topology inherited from (Hausdorf) Euclidean topology of $V$. Supose there is a point $vin C$ such that the orbit $GL(n,mathbbR)â v$ is an open subset of $C$.
My questions is: is it true that the orbit $GL(n,mathbbR)â v$ must be a Zariski-open subset of $C$?
ag.algebraic-geometry algebraic-groups group-actions real-algebraic-geometry
add a comment |Â
up vote
5
down vote
favorite
up vote
5
down vote
favorite
Let $tau:GL(n,mathbbR) rightarrow GL(V)$ be a rational representation of the general linear group of degree $n$ on a finite-dimensional real vector space $V$. Let $C$ be an irreducible real algebraic set in $V$ such that the action of $GL(n,mathbbR)$ on $V$ induced by $tau$ leaves the set $C$ invariant.
We endow $C$ with the subspace topology inherited from (Hausdorf) Euclidean topology of $V$. Supose there is a point $vin C$ such that the orbit $GL(n,mathbbR)â v$ is an open subset of $C$.
My questions is: is it true that the orbit $GL(n,mathbbR)â v$ must be a Zariski-open subset of $C$?
ag.algebraic-geometry algebraic-groups group-actions real-algebraic-geometry
Let $tau:GL(n,mathbbR) rightarrow GL(V)$ be a rational representation of the general linear group of degree $n$ on a finite-dimensional real vector space $V$. Let $C$ be an irreducible real algebraic set in $V$ such that the action of $GL(n,mathbbR)$ on $V$ induced by $tau$ leaves the set $C$ invariant.
We endow $C$ with the subspace topology inherited from (Hausdorf) Euclidean topology of $V$. Supose there is a point $vin C$ such that the orbit $GL(n,mathbbR)â v$ is an open subset of $C$.
My questions is: is it true that the orbit $GL(n,mathbbR)â v$ must be a Zariski-open subset of $C$?
ag.algebraic-geometry algebraic-groups group-actions real-algebraic-geometry
ag.algebraic-geometry algebraic-groups group-actions real-algebraic-geometry
asked Aug 19 at 21:10
AleAlvAlwaysDIEZ
261
261
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
7
down vote
No, not at all. Take for $V$ the space of quadratic forms on $mathbb R^n$, let $v=sum_ix_i^2$ be the standard form, and $C=V$. Then $GL(n,mathbb R)v$ is the set of positive definite forms. So, it is Hausdorff open but not Zariski open. NB: This example even works for $n=1$.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
7
down vote
No, not at all. Take for $V$ the space of quadratic forms on $mathbb R^n$, let $v=sum_ix_i^2$ be the standard form, and $C=V$. Then $GL(n,mathbb R)v$ is the set of positive definite forms. So, it is Hausdorff open but not Zariski open. NB: This example even works for $n=1$.
add a comment |Â
up vote
7
down vote
No, not at all. Take for $V$ the space of quadratic forms on $mathbb R^n$, let $v=sum_ix_i^2$ be the standard form, and $C=V$. Then $GL(n,mathbb R)v$ is the set of positive definite forms. So, it is Hausdorff open but not Zariski open. NB: This example even works for $n=1$.
add a comment |Â
up vote
7
down vote
up vote
7
down vote
No, not at all. Take for $V$ the space of quadratic forms on $mathbb R^n$, let $v=sum_ix_i^2$ be the standard form, and $C=V$. Then $GL(n,mathbb R)v$ is the set of positive definite forms. So, it is Hausdorff open but not Zariski open. NB: This example even works for $n=1$.
No, not at all. Take for $V$ the space of quadratic forms on $mathbb R^n$, let $v=sum_ix_i^2$ be the standard form, and $C=V$. Then $GL(n,mathbb R)v$ is the set of positive definite forms. So, it is Hausdorff open but not Zariski open. NB: This example even works for $n=1$.
answered Aug 19 at 21:38
Friedrich Knop
10.5k23054
10.5k23054
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f308701%2feuclidean-open-orbit-in-an-irreducible-real-algebraic-set%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password