(Euclidean) open orbit in an irreducible real algebraic set

Multi tool use
Multi tool use

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
5
down vote

favorite












Let $tau:GL(n,mathbbR) rightarrow GL(V)$ be a rational representation of the general linear group of degree $n$ on a finite-dimensional real vector space $V$. Let $C$ be an irreducible real algebraic set in $V$ such that the action of $GL(n,mathbbR)$ on $V$ induced by $tau$ leaves the set $C$ invariant.



We endow $C$ with the subspace topology inherited from (Hausdorf) Euclidean topology of $V$. Supose there is a point $vin C$ such that the orbit $GL(n,mathbbR)⋅v$ is an open subset of $C$.



My questions is: is it true that the orbit $GL(n,mathbbR)⋅v$ must be a Zariski-open subset of $C$?










share|cite|improve this question

























    up vote
    5
    down vote

    favorite












    Let $tau:GL(n,mathbbR) rightarrow GL(V)$ be a rational representation of the general linear group of degree $n$ on a finite-dimensional real vector space $V$. Let $C$ be an irreducible real algebraic set in $V$ such that the action of $GL(n,mathbbR)$ on $V$ induced by $tau$ leaves the set $C$ invariant.



    We endow $C$ with the subspace topology inherited from (Hausdorf) Euclidean topology of $V$. Supose there is a point $vin C$ such that the orbit $GL(n,mathbbR)⋅v$ is an open subset of $C$.



    My questions is: is it true that the orbit $GL(n,mathbbR)⋅v$ must be a Zariski-open subset of $C$?










    share|cite|improve this question























      up vote
      5
      down vote

      favorite









      up vote
      5
      down vote

      favorite











      Let $tau:GL(n,mathbbR) rightarrow GL(V)$ be a rational representation of the general linear group of degree $n$ on a finite-dimensional real vector space $V$. Let $C$ be an irreducible real algebraic set in $V$ such that the action of $GL(n,mathbbR)$ on $V$ induced by $tau$ leaves the set $C$ invariant.



      We endow $C$ with the subspace topology inherited from (Hausdorf) Euclidean topology of $V$. Supose there is a point $vin C$ such that the orbit $GL(n,mathbbR)⋅v$ is an open subset of $C$.



      My questions is: is it true that the orbit $GL(n,mathbbR)⋅v$ must be a Zariski-open subset of $C$?










      share|cite|improve this question













      Let $tau:GL(n,mathbbR) rightarrow GL(V)$ be a rational representation of the general linear group of degree $n$ on a finite-dimensional real vector space $V$. Let $C$ be an irreducible real algebraic set in $V$ such that the action of $GL(n,mathbbR)$ on $V$ induced by $tau$ leaves the set $C$ invariant.



      We endow $C$ with the subspace topology inherited from (Hausdorf) Euclidean topology of $V$. Supose there is a point $vin C$ such that the orbit $GL(n,mathbbR)⋅v$ is an open subset of $C$.



      My questions is: is it true that the orbit $GL(n,mathbbR)⋅v$ must be a Zariski-open subset of $C$?







      ag.algebraic-geometry algebraic-groups group-actions real-algebraic-geometry






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Aug 19 at 21:10









      AleAlvAlwaysDIEZ

      261




      261




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          7
          down vote













          No, not at all. Take for $V$ the space of quadratic forms on $mathbb R^n$, let $v=sum_ix_i^2$ be the standard form, and $C=V$. Then $GL(n,mathbb R)v$ is the set of positive definite forms. So, it is Hausdorff open but not Zariski open. NB: This example even works for $n=1$.






          share|cite|improve this answer




















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "504"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f308701%2feuclidean-open-orbit-in-an-irreducible-real-algebraic-set%23new-answer', 'question_page');

            );

            Post as a guest






























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            7
            down vote













            No, not at all. Take for $V$ the space of quadratic forms on $mathbb R^n$, let $v=sum_ix_i^2$ be the standard form, and $C=V$. Then $GL(n,mathbb R)v$ is the set of positive definite forms. So, it is Hausdorff open but not Zariski open. NB: This example even works for $n=1$.






            share|cite|improve this answer
























              up vote
              7
              down vote













              No, not at all. Take for $V$ the space of quadratic forms on $mathbb R^n$, let $v=sum_ix_i^2$ be the standard form, and $C=V$. Then $GL(n,mathbb R)v$ is the set of positive definite forms. So, it is Hausdorff open but not Zariski open. NB: This example even works for $n=1$.






              share|cite|improve this answer






















                up vote
                7
                down vote










                up vote
                7
                down vote









                No, not at all. Take for $V$ the space of quadratic forms on $mathbb R^n$, let $v=sum_ix_i^2$ be the standard form, and $C=V$. Then $GL(n,mathbb R)v$ is the set of positive definite forms. So, it is Hausdorff open but not Zariski open. NB: This example even works for $n=1$.






                share|cite|improve this answer












                No, not at all. Take for $V$ the space of quadratic forms on $mathbb R^n$, let $v=sum_ix_i^2$ be the standard form, and $C=V$. Then $GL(n,mathbb R)v$ is the set of positive definite forms. So, it is Hausdorff open but not Zariski open. NB: This example even works for $n=1$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Aug 19 at 21:38









                Friedrich Knop

                10.5k23054




                10.5k23054



























                     

                    draft saved


                    draft discarded















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f308701%2feuclidean-open-orbit-in-an-irreducible-real-algebraic-set%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    jvlWKghD4tD7voYEztURNyz2,A G4 r35SbE,fJ,C3
                    ANl4OEEdVQPUaIOCo,gNqepyFU07GX,GLr qHd kOZk,BKbqRY,sOjMANAJ P,1t3f is nZ2ugI rrUw

                    Popular posts from this blog

                    How to check contact read email or not when send email to Individual?

                    How many registers does an x86_64 CPU actually have?

                    Displaying single band from multi-band raster using QGIS