Why is LDBL_MAX 1.18973E+4932 and how is this possible?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite














If I write a C program to say the value of LDBL_MAX the largest value for a long double,



#include <float.h>
#include <stdio.h>
int main(void)
const long double max = LDBL_MAX;

printf("%Lfn", max);
printf("%LGn", max);



on my Linux laptops it prints



1189731495357231765021263853030970205169063322294624200440323733891737005522970722616410290336528882853545697807495577314427443153670288434198125573853743678673593200706973263201915918282961524365529510646791086614311790632169778838896134786560600399148753433211454911160088679845154866512852340149773037600009125479393966223151383622417838542743917838138717805889487540575168226347659235576974805113725649020884855222494791399377585026011773549180099796226026859508558883608159846900235645132346594476384939859276456284579661772930407806609229102715046085388087959327781622986827547830768080040150694942303411728957777100335714010559775242124057347007386251660110828379119623008469277200965153500208474470792443848545912886723000619085126472111951361467527633519562927597957250278002980795904193139603021470997035276467445530922022679656280991498232083329641241038509239184734786121921697210543484287048353408113042573002216421348917347174234800714880751002064390517234247656004721768096486107994943415703476320643558624207443504424380566136017608837478165389027809576975977286860071487028287955567141404632615832623602762896316173978484254486860609948270867968048078702511858930838546584223040908805996294594586201903766048446790926002225410530775901065760671347200125846406957030257138960983757998926954553052368560758683179223113639519468850880771872104705203957587480013143131444254943919940175753169339392366881856189129931729104252921236835159922322050998001677102784035360140829296398115122877768135706045789343535451696539561254048846447169786893211671087229088082778350518228857646062218739702851655083720992349483334435228984751232753726636066213902281264706234075352071724058665079518217303463782631353393706774901950197841690441824738063162828586857741432581165364040218402724913393320949219498422442730427019873044536620350262386957804682003601447291997123095530057206141866974852846856186514832715974481203121946751686379343096189615107330065552421485195201762858595091051839472502863871632494167613804996319791441870254302706758495192008837915169401581740046711477877201459644461175204059453504764721807975761111720846273639279600339670470037613374509553184150073796412605047923251661354841291884211340823015473304754067072818763503617332908005951896325207071673904547777129682265206225651439919376804400292380903112437912614776255964694221981375146967079446870358004392507659451618379811859392049544036114915310782251072691486979809240946772142727012404377187409216756613634938900451232351668146089322400697993176017805338191849981933008410985993938760292601390911414526003720284872132411955424282101831204216104467404621635336900583664606591156298764745525068145003932941404131495400677602951005962253022823003631473824681059648442441324864573137437595096416168048024129351876204668135636877532814675538798871771836512893947195335061885003267607354388673368002074387849657014576090349857571243045102038730494854256702479339322809110526041538528994849203991091946129912491633289917998094380337879522093131466946149705939664152375949285890960489916121944989986384837022486672249148924678410206183364627416969576307632480235587975245253737035433882960862753427740016333434055083537048507374544819754722228975281083020898682633020285259923084168054539687911418297629988964576482765287504562854924265165217750799516259669229114977788962356670956627138482018191348321687995863652637620978285070099337294396784639879024914514222742527006363942327998483976739987154418554201562244154926653014515504685489258620276085761837129763358761215382565129633538141663949516556000264159186554850057052611431952919918807954522394649627635630178580896692226406235382898535867595990647008385687123810329591926494846250768992258419305480763620215089022149220528069842018350840586938493815498909445461977893029113576516775406232278298314033473276603952231603422824717528181818844304880921321933550869873395861276073670866652375555675803171490108477320096424318780070008797346032906278943553743564448851907191616455141155761939399690767415156402826543664026760095087523945507341556135867933066031744720924446513532366647649735400851967040771103640538150073486891798364049570606189535005089840913826869535090066783324472578712196604415284924840041850932811908963634175739897166596000759487800619164094854338758520657116541072260996288150123144377944008749301944744330784388995701842710004808305012177123560622895076269042856800047718893158089358515593863176652948089031267747029662545110861548958395087796755464137944895960527975209874813839762578592105756284401759349324162148339565350189196811389091843795734703269406342890087805846940352453479398080674273236297887100867175802531561302356064878709259865288416350972529537091114317204887747405539054009425375424119317944175137064689643861517718849867010341532542385911089624710885385808688837777258648564145934262121086647588489260031762345960769508849149662444156604419552086811989770240.000000
1.18973E+4932


a 1 followed by 4,932 0s.



My confusion is that:



  1. Why is it that number, and why so large? I cannot tell how many bits are used to represent this number because it is too large for every language interpreter and website.


  2. How is this possible? Wikipedia tells us that long double is 80 bits on Intel, but there is no way to fit 4933 significant digits into 80 bits. The largest integer in 80 bits is 1208925819614629174706176.


This is gcc (Ubuntu 7.2.0-8ubuntu3.2) 7.2.0 / clang version 4.0.1-6 on Linux 4.13.0-38-generic #43-Ubuntu SMP Wed Mar 14 15:20:44 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux.



The CPU is Intel® Core™ i3-3217U and the chipset is Mobile Intel Panther point HM77 in a Lenovo Ideapad but the result is the same on a HM68 Core i7 Toshiba.







share|improve this question



















  • there is no way to fit 4933 significant digits into 80 bits Why do you think there are 4933 significant digits in a long double?
    – Andrew Henle
    Apr 19 at 14:49











  • The integer portion of your number is not "too large for every language interpreter and website". For example, GHCi (the Haskell interpreter) can work with it without complaint
    – Fox
    Apr 19 at 15:32










  • @fox i forgot about GHCI, i tried Python and Factor and Pure and other sites and interpreters i thought had arbitrary precision
    – cat
    Apr 19 at 18:45














up vote
1
down vote

favorite














If I write a C program to say the value of LDBL_MAX the largest value for a long double,



#include <float.h>
#include <stdio.h>
int main(void)
const long double max = LDBL_MAX;

printf("%Lfn", max);
printf("%LGn", max);



on my Linux laptops it prints



1189731495357231765021263853030970205169063322294624200440323733891737005522970722616410290336528882853545697807495577314427443153670288434198125573853743678673593200706973263201915918282961524365529510646791086614311790632169778838896134786560600399148753433211454911160088679845154866512852340149773037600009125479393966223151383622417838542743917838138717805889487540575168226347659235576974805113725649020884855222494791399377585026011773549180099796226026859508558883608159846900235645132346594476384939859276456284579661772930407806609229102715046085388087959327781622986827547830768080040150694942303411728957777100335714010559775242124057347007386251660110828379119623008469277200965153500208474470792443848545912886723000619085126472111951361467527633519562927597957250278002980795904193139603021470997035276467445530922022679656280991498232083329641241038509239184734786121921697210543484287048353408113042573002216421348917347174234800714880751002064390517234247656004721768096486107994943415703476320643558624207443504424380566136017608837478165389027809576975977286860071487028287955567141404632615832623602762896316173978484254486860609948270867968048078702511858930838546584223040908805996294594586201903766048446790926002225410530775901065760671347200125846406957030257138960983757998926954553052368560758683179223113639519468850880771872104705203957587480013143131444254943919940175753169339392366881856189129931729104252921236835159922322050998001677102784035360140829296398115122877768135706045789343535451696539561254048846447169786893211671087229088082778350518228857646062218739702851655083720992349483334435228984751232753726636066213902281264706234075352071724058665079518217303463782631353393706774901950197841690441824738063162828586857741432581165364040218402724913393320949219498422442730427019873044536620350262386957804682003601447291997123095530057206141866974852846856186514832715974481203121946751686379343096189615107330065552421485195201762858595091051839472502863871632494167613804996319791441870254302706758495192008837915169401581740046711477877201459644461175204059453504764721807975761111720846273639279600339670470037613374509553184150073796412605047923251661354841291884211340823015473304754067072818763503617332908005951896325207071673904547777129682265206225651439919376804400292380903112437912614776255964694221981375146967079446870358004392507659451618379811859392049544036114915310782251072691486979809240946772142727012404377187409216756613634938900451232351668146089322400697993176017805338191849981933008410985993938760292601390911414526003720284872132411955424282101831204216104467404621635336900583664606591156298764745525068145003932941404131495400677602951005962253022823003631473824681059648442441324864573137437595096416168048024129351876204668135636877532814675538798871771836512893947195335061885003267607354388673368002074387849657014576090349857571243045102038730494854256702479339322809110526041538528994849203991091946129912491633289917998094380337879522093131466946149705939664152375949285890960489916121944989986384837022486672249148924678410206183364627416969576307632480235587975245253737035433882960862753427740016333434055083537048507374544819754722228975281083020898682633020285259923084168054539687911418297629988964576482765287504562854924265165217750799516259669229114977788962356670956627138482018191348321687995863652637620978285070099337294396784639879024914514222742527006363942327998483976739987154418554201562244154926653014515504685489258620276085761837129763358761215382565129633538141663949516556000264159186554850057052611431952919918807954522394649627635630178580896692226406235382898535867595990647008385687123810329591926494846250768992258419305480763620215089022149220528069842018350840586938493815498909445461977893029113576516775406232278298314033473276603952231603422824717528181818844304880921321933550869873395861276073670866652375555675803171490108477320096424318780070008797346032906278943553743564448851907191616455141155761939399690767415156402826543664026760095087523945507341556135867933066031744720924446513532366647649735400851967040771103640538150073486891798364049570606189535005089840913826869535090066783324472578712196604415284924840041850932811908963634175739897166596000759487800619164094854338758520657116541072260996288150123144377944008749301944744330784388995701842710004808305012177123560622895076269042856800047718893158089358515593863176652948089031267747029662545110861548958395087796755464137944895960527975209874813839762578592105756284401759349324162148339565350189196811389091843795734703269406342890087805846940352453479398080674273236297887100867175802531561302356064878709259865288416350972529537091114317204887747405539054009425375424119317944175137064689643861517718849867010341532542385911089624710885385808688837777258648564145934262121086647588489260031762345960769508849149662444156604419552086811989770240.000000
1.18973E+4932


a 1 followed by 4,932 0s.



My confusion is that:



  1. Why is it that number, and why so large? I cannot tell how many bits are used to represent this number because it is too large for every language interpreter and website.


  2. How is this possible? Wikipedia tells us that long double is 80 bits on Intel, but there is no way to fit 4933 significant digits into 80 bits. The largest integer in 80 bits is 1208925819614629174706176.


This is gcc (Ubuntu 7.2.0-8ubuntu3.2) 7.2.0 / clang version 4.0.1-6 on Linux 4.13.0-38-generic #43-Ubuntu SMP Wed Mar 14 15:20:44 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux.



The CPU is Intel® Core™ i3-3217U and the chipset is Mobile Intel Panther point HM77 in a Lenovo Ideapad but the result is the same on a HM68 Core i7 Toshiba.







share|improve this question



















  • there is no way to fit 4933 significant digits into 80 bits Why do you think there are 4933 significant digits in a long double?
    – Andrew Henle
    Apr 19 at 14:49











  • The integer portion of your number is not "too large for every language interpreter and website". For example, GHCi (the Haskell interpreter) can work with it without complaint
    – Fox
    Apr 19 at 15:32










  • @fox i forgot about GHCI, i tried Python and Factor and Pure and other sites and interpreters i thought had arbitrary precision
    – cat
    Apr 19 at 18:45












up vote
1
down vote

favorite









up vote
1
down vote

favorite













If I write a C program to say the value of LDBL_MAX the largest value for a long double,



#include <float.h>
#include <stdio.h>
int main(void)
const long double max = LDBL_MAX;

printf("%Lfn", max);
printf("%LGn", max);



on my Linux laptops it prints



1189731495357231765021263853030970205169063322294624200440323733891737005522970722616410290336528882853545697807495577314427443153670288434198125573853743678673593200706973263201915918282961524365529510646791086614311790632169778838896134786560600399148753433211454911160088679845154866512852340149773037600009125479393966223151383622417838542743917838138717805889487540575168226347659235576974805113725649020884855222494791399377585026011773549180099796226026859508558883608159846900235645132346594476384939859276456284579661772930407806609229102715046085388087959327781622986827547830768080040150694942303411728957777100335714010559775242124057347007386251660110828379119623008469277200965153500208474470792443848545912886723000619085126472111951361467527633519562927597957250278002980795904193139603021470997035276467445530922022679656280991498232083329641241038509239184734786121921697210543484287048353408113042573002216421348917347174234800714880751002064390517234247656004721768096486107994943415703476320643558624207443504424380566136017608837478165389027809576975977286860071487028287955567141404632615832623602762896316173978484254486860609948270867968048078702511858930838546584223040908805996294594586201903766048446790926002225410530775901065760671347200125846406957030257138960983757998926954553052368560758683179223113639519468850880771872104705203957587480013143131444254943919940175753169339392366881856189129931729104252921236835159922322050998001677102784035360140829296398115122877768135706045789343535451696539561254048846447169786893211671087229088082778350518228857646062218739702851655083720992349483334435228984751232753726636066213902281264706234075352071724058665079518217303463782631353393706774901950197841690441824738063162828586857741432581165364040218402724913393320949219498422442730427019873044536620350262386957804682003601447291997123095530057206141866974852846856186514832715974481203121946751686379343096189615107330065552421485195201762858595091051839472502863871632494167613804996319791441870254302706758495192008837915169401581740046711477877201459644461175204059453504764721807975761111720846273639279600339670470037613374509553184150073796412605047923251661354841291884211340823015473304754067072818763503617332908005951896325207071673904547777129682265206225651439919376804400292380903112437912614776255964694221981375146967079446870358004392507659451618379811859392049544036114915310782251072691486979809240946772142727012404377187409216756613634938900451232351668146089322400697993176017805338191849981933008410985993938760292601390911414526003720284872132411955424282101831204216104467404621635336900583664606591156298764745525068145003932941404131495400677602951005962253022823003631473824681059648442441324864573137437595096416168048024129351876204668135636877532814675538798871771836512893947195335061885003267607354388673368002074387849657014576090349857571243045102038730494854256702479339322809110526041538528994849203991091946129912491633289917998094380337879522093131466946149705939664152375949285890960489916121944989986384837022486672249148924678410206183364627416969576307632480235587975245253737035433882960862753427740016333434055083537048507374544819754722228975281083020898682633020285259923084168054539687911418297629988964576482765287504562854924265165217750799516259669229114977788962356670956627138482018191348321687995863652637620978285070099337294396784639879024914514222742527006363942327998483976739987154418554201562244154926653014515504685489258620276085761837129763358761215382565129633538141663949516556000264159186554850057052611431952919918807954522394649627635630178580896692226406235382898535867595990647008385687123810329591926494846250768992258419305480763620215089022149220528069842018350840586938493815498909445461977893029113576516775406232278298314033473276603952231603422824717528181818844304880921321933550869873395861276073670866652375555675803171490108477320096424318780070008797346032906278943553743564448851907191616455141155761939399690767415156402826543664026760095087523945507341556135867933066031744720924446513532366647649735400851967040771103640538150073486891798364049570606189535005089840913826869535090066783324472578712196604415284924840041850932811908963634175739897166596000759487800619164094854338758520657116541072260996288150123144377944008749301944744330784388995701842710004808305012177123560622895076269042856800047718893158089358515593863176652948089031267747029662545110861548958395087796755464137944895960527975209874813839762578592105756284401759349324162148339565350189196811389091843795734703269406342890087805846940352453479398080674273236297887100867175802531561302356064878709259865288416350972529537091114317204887747405539054009425375424119317944175137064689643861517718849867010341532542385911089624710885385808688837777258648564145934262121086647588489260031762345960769508849149662444156604419552086811989770240.000000
1.18973E+4932


a 1 followed by 4,932 0s.



My confusion is that:



  1. Why is it that number, and why so large? I cannot tell how many bits are used to represent this number because it is too large for every language interpreter and website.


  2. How is this possible? Wikipedia tells us that long double is 80 bits on Intel, but there is no way to fit 4933 significant digits into 80 bits. The largest integer in 80 bits is 1208925819614629174706176.


This is gcc (Ubuntu 7.2.0-8ubuntu3.2) 7.2.0 / clang version 4.0.1-6 on Linux 4.13.0-38-generic #43-Ubuntu SMP Wed Mar 14 15:20:44 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux.



The CPU is Intel® Core™ i3-3217U and the chipset is Mobile Intel Panther point HM77 in a Lenovo Ideapad but the result is the same on a HM68 Core i7 Toshiba.







share|improve this question













If I write a C program to say the value of LDBL_MAX the largest value for a long double,



#include <float.h>
#include <stdio.h>
int main(void)
const long double max = LDBL_MAX;

printf("%Lfn", max);
printf("%LGn", max);



on my Linux laptops it prints



1189731495357231765021263853030970205169063322294624200440323733891737005522970722616410290336528882853545697807495577314427443153670288434198125573853743678673593200706973263201915918282961524365529510646791086614311790632169778838896134786560600399148753433211454911160088679845154866512852340149773037600009125479393966223151383622417838542743917838138717805889487540575168226347659235576974805113725649020884855222494791399377585026011773549180099796226026859508558883608159846900235645132346594476384939859276456284579661772930407806609229102715046085388087959327781622986827547830768080040150694942303411728957777100335714010559775242124057347007386251660110828379119623008469277200965153500208474470792443848545912886723000619085126472111951361467527633519562927597957250278002980795904193139603021470997035276467445530922022679656280991498232083329641241038509239184734786121921697210543484287048353408113042573002216421348917347174234800714880751002064390517234247656004721768096486107994943415703476320643558624207443504424380566136017608837478165389027809576975977286860071487028287955567141404632615832623602762896316173978484254486860609948270867968048078702511858930838546584223040908805996294594586201903766048446790926002225410530775901065760671347200125846406957030257138960983757998926954553052368560758683179223113639519468850880771872104705203957587480013143131444254943919940175753169339392366881856189129931729104252921236835159922322050998001677102784035360140829296398115122877768135706045789343535451696539561254048846447169786893211671087229088082778350518228857646062218739702851655083720992349483334435228984751232753726636066213902281264706234075352071724058665079518217303463782631353393706774901950197841690441824738063162828586857741432581165364040218402724913393320949219498422442730427019873044536620350262386957804682003601447291997123095530057206141866974852846856186514832715974481203121946751686379343096189615107330065552421485195201762858595091051839472502863871632494167613804996319791441870254302706758495192008837915169401581740046711477877201459644461175204059453504764721807975761111720846273639279600339670470037613374509553184150073796412605047923251661354841291884211340823015473304754067072818763503617332908005951896325207071673904547777129682265206225651439919376804400292380903112437912614776255964694221981375146967079446870358004392507659451618379811859392049544036114915310782251072691486979809240946772142727012404377187409216756613634938900451232351668146089322400697993176017805338191849981933008410985993938760292601390911414526003720284872132411955424282101831204216104467404621635336900583664606591156298764745525068145003932941404131495400677602951005962253022823003631473824681059648442441324864573137437595096416168048024129351876204668135636877532814675538798871771836512893947195335061885003267607354388673368002074387849657014576090349857571243045102038730494854256702479339322809110526041538528994849203991091946129912491633289917998094380337879522093131466946149705939664152375949285890960489916121944989986384837022486672249148924678410206183364627416969576307632480235587975245253737035433882960862753427740016333434055083537048507374544819754722228975281083020898682633020285259923084168054539687911418297629988964576482765287504562854924265165217750799516259669229114977788962356670956627138482018191348321687995863652637620978285070099337294396784639879024914514222742527006363942327998483976739987154418554201562244154926653014515504685489258620276085761837129763358761215382565129633538141663949516556000264159186554850057052611431952919918807954522394649627635630178580896692226406235382898535867595990647008385687123810329591926494846250768992258419305480763620215089022149220528069842018350840586938493815498909445461977893029113576516775406232278298314033473276603952231603422824717528181818844304880921321933550869873395861276073670866652375555675803171490108477320096424318780070008797346032906278943553743564448851907191616455141155761939399690767415156402826543664026760095087523945507341556135867933066031744720924446513532366647649735400851967040771103640538150073486891798364049570606189535005089840913826869535090066783324472578712196604415284924840041850932811908963634175739897166596000759487800619164094854338758520657116541072260996288150123144377944008749301944744330784388995701842710004808305012177123560622895076269042856800047718893158089358515593863176652948089031267747029662545110861548958395087796755464137944895960527975209874813839762578592105756284401759349324162148339565350189196811389091843795734703269406342890087805846940352453479398080674273236297887100867175802531561302356064878709259865288416350972529537091114317204887747405539054009425375424119317944175137064689643861517718849867010341532542385911089624710885385808688837777258648564145934262121086647588489260031762345960769508849149662444156604419552086811989770240.000000
1.18973E+4932


a 1 followed by 4,932 0s.



My confusion is that:



  1. Why is it that number, and why so large? I cannot tell how many bits are used to represent this number because it is too large for every language interpreter and website.


  2. How is this possible? Wikipedia tells us that long double is 80 bits on Intel, but there is no way to fit 4933 significant digits into 80 bits. The largest integer in 80 bits is 1208925819614629174706176.


This is gcc (Ubuntu 7.2.0-8ubuntu3.2) 7.2.0 / clang version 4.0.1-6 on Linux 4.13.0-38-generic #43-Ubuntu SMP Wed Mar 14 15:20:44 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux.



The CPU is Intel® Core™ i3-3217U and the chipset is Mobile Intel Panther point HM77 in a Lenovo Ideapad but the result is the same on a HM68 Core i7 Toshiba.









share|improve this question










share|improve this question




share|improve this question









asked Apr 19 at 14:42









cat

1,65121035




1,65121035











  • there is no way to fit 4933 significant digits into 80 bits Why do you think there are 4933 significant digits in a long double?
    – Andrew Henle
    Apr 19 at 14:49











  • The integer portion of your number is not "too large for every language interpreter and website". For example, GHCi (the Haskell interpreter) can work with it without complaint
    – Fox
    Apr 19 at 15:32










  • @fox i forgot about GHCI, i tried Python and Factor and Pure and other sites and interpreters i thought had arbitrary precision
    – cat
    Apr 19 at 18:45
















  • there is no way to fit 4933 significant digits into 80 bits Why do you think there are 4933 significant digits in a long double?
    – Andrew Henle
    Apr 19 at 14:49











  • The integer portion of your number is not "too large for every language interpreter and website". For example, GHCi (the Haskell interpreter) can work with it without complaint
    – Fox
    Apr 19 at 15:32










  • @fox i forgot about GHCI, i tried Python and Factor and Pure and other sites and interpreters i thought had arbitrary precision
    – cat
    Apr 19 at 18:45















there is no way to fit 4933 significant digits into 80 bits Why do you think there are 4933 significant digits in a long double?
– Andrew Henle
Apr 19 at 14:49





there is no way to fit 4933 significant digits into 80 bits Why do you think there are 4933 significant digits in a long double?
– Andrew Henle
Apr 19 at 14:49













The integer portion of your number is not "too large for every language interpreter and website". For example, GHCi (the Haskell interpreter) can work with it without complaint
– Fox
Apr 19 at 15:32




The integer portion of your number is not "too large for every language interpreter and website". For example, GHCi (the Haskell interpreter) can work with it without complaint
– Fox
Apr 19 at 15:32












@fox i forgot about GHCI, i tried Python and Factor and Pure and other sites and interpreters i thought had arbitrary precision
– cat
Apr 19 at 18:45




@fox i forgot about GHCI, i tried Python and Factor and Pure and other sites and interpreters i thought had arbitrary precision
– cat
Apr 19 at 18:45










1 Answer
1






active

oldest

votes

















up vote
2
down vote













You are probably used to thinking of numbers as some number times some power of 10. Floating point numbers are represented as some number times some power of 2. You can represent 102410 (100000000002) with just a single significant bit, even though it looks like it has three significant digits.



The number you listed:



1189731495357231765021263853030970205169063322294624200440323733891737005522970722616410290336528882853545697807495577314427443153670288434198125573853743678673593200706973263201915918282961524365529510646791086614311790632169778838896134786560600399148753433211454911160088679845154866512852340149773037600009125479393966223151383622417838542743917838138717805889487540575168226347659235576974805113725649020884855222494791399377585026011773549180099796226026859508558883608159846900235645132346594476384939859276456284579661772930407806609229102715046085388087959327781622986827547830768080040150694942303411728957777100335714010559775242124057347007386251660110828379119623008469277200965153500208474470792443848545912886723000619085126472111951361467527633519562927597957250278002980795904193139603021470997035276467445530922022679656280991498232083329641241038509239184734786121921697210543484287048353408113042573002216421348917347174234800714880751002064390517234247656004721768096486107994943415703476320643558624207443504424380566136017608837478165389027809576975977286860071487028287955567141404632615832623602762896316173978484254486860609948270867968048078702511858930838546584223040908805996294594586201903766048446790926002225410530775901065760671347200125846406957030257138960983757998926954553052368560758683179223113639519468850880771872104705203957587480013143131444254943919940175753169339392366881856189129931729104252921236835159922322050998001677102784035360140829296398115122877768135706045789343535451696539561254048846447169786893211671087229088082778350518228857646062218739702851655083720992349483334435228984751232753726636066213902281264706234075352071724058665079518217303463782631353393706774901950197841690441824738063162828586857741432581165364040218402724913393320949219498422442730427019873044536620350262386957804682003601447291997123095530057206141866974852846856186514832715974481203121946751686379343096189615107330065552421485195201762858595091051839472502863871632494167613804996319791441870254302706758495192008837915169401581740046711477877201459644461175204059453504764721807975761111720846273639279600339670470037613374509553184150073796412605047923251661354841291884211340823015473304754067072818763503617332908005951896325207071673904547777129682265206225651439919376804400292380903112437912614776255964694221981375146967079446870358004392507659451618379811859392049544036114915310782251072691486979809240946772142727012404377187409216756613634938900451232351668146089322400697993176017805338191849981933008410985993938760292601390911414526003720284872132411955424282101831204216104467404621635336900583664606591156298764745525068145003932941404131495400677602951005962253022823003631473824681059648442441324864573137437595096416168048024129351876204668135636877532814675538798871771836512893947195335061885003267607354388673368002074387849657014576090349857571243045102038730494854256702479339322809110526041538528994849203991091946129912491633289917998094380337879522093131466946149705939664152375949285890960489916121944989986384837022486672249148924678410206183364627416969576307632480235587975245253737035433882960862753427740016333434055083537048507374544819754722228975281083020898682633020285259923084168054539687911418297629988964576482765287504562854924265165217750799516259669229114977788962356670956627138482018191348321687995863652637620978285070099337294396784639879024914514222742527006363942327998483976739987154418554201562244154926653014515504685489258620276085761837129763358761215382565129633538141663949516556000264159186554850057052611431952919918807954522394649627635630178580896692226406235382898535867595990647008385687123810329591926494846250768992258419305480763620215089022149220528069842018350840586938493815498909445461977893029113576516775406232278298314033473276603952231603422824717528181818844304880921321933550869873395861276073670866652375555675803171490108477320096424318780070008797346032906278943553743564448851907191616455141155761939399690767415156402826543664026760095087523945507341556135867933066031744720924446513532366647649735400851967040771103640538150073486891798364049570606189535005089840913826869535090066783324472578712196604415284924840041850932811908963634175739897166596000759487800619164094854338758520657116541072260996288150123144377944008749301944744330784388995701842710004808305012177123560622895076269042856800047718893158089358515593863176652948089031267747029662545110861548958395087796755464137944895960527975209874813839762578592105756284401759349324162148339565350189196811389091843795734703269406342890087805846940352453479398080674273236297887100867175802531561302356064878709259865288416350972529537091114317204887747405539054009425375424119317944175137064689643861517718849867010341532542385911089624710885385808688837777258648564145934262121086647588489260031762345960769508849149662444156604419552086811989770240.000000


is equal to (264-1)*216320. Expanding only the mantissa, this is 18446744073709551615*216320, which is only 20 significant digits.






share|improve this answer























    Your Answer







    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "106"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: false,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2funix.stackexchange.com%2fquestions%2f438753%2fwhy-is-ldbl-max-1-18973e4932-and-how-is-this-possible%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    2
    down vote













    You are probably used to thinking of numbers as some number times some power of 10. Floating point numbers are represented as some number times some power of 2. You can represent 102410 (100000000002) with just a single significant bit, even though it looks like it has three significant digits.



    The number you listed:



    1189731495357231765021263853030970205169063322294624200440323733891737005522970722616410290336528882853545697807495577314427443153670288434198125573853743678673593200706973263201915918282961524365529510646791086614311790632169778838896134786560600399148753433211454911160088679845154866512852340149773037600009125479393966223151383622417838542743917838138717805889487540575168226347659235576974805113725649020884855222494791399377585026011773549180099796226026859508558883608159846900235645132346594476384939859276456284579661772930407806609229102715046085388087959327781622986827547830768080040150694942303411728957777100335714010559775242124057347007386251660110828379119623008469277200965153500208474470792443848545912886723000619085126472111951361467527633519562927597957250278002980795904193139603021470997035276467445530922022679656280991498232083329641241038509239184734786121921697210543484287048353408113042573002216421348917347174234800714880751002064390517234247656004721768096486107994943415703476320643558624207443504424380566136017608837478165389027809576975977286860071487028287955567141404632615832623602762896316173978484254486860609948270867968048078702511858930838546584223040908805996294594586201903766048446790926002225410530775901065760671347200125846406957030257138960983757998926954553052368560758683179223113639519468850880771872104705203957587480013143131444254943919940175753169339392366881856189129931729104252921236835159922322050998001677102784035360140829296398115122877768135706045789343535451696539561254048846447169786893211671087229088082778350518228857646062218739702851655083720992349483334435228984751232753726636066213902281264706234075352071724058665079518217303463782631353393706774901950197841690441824738063162828586857741432581165364040218402724913393320949219498422442730427019873044536620350262386957804682003601447291997123095530057206141866974852846856186514832715974481203121946751686379343096189615107330065552421485195201762858595091051839472502863871632494167613804996319791441870254302706758495192008837915169401581740046711477877201459644461175204059453504764721807975761111720846273639279600339670470037613374509553184150073796412605047923251661354841291884211340823015473304754067072818763503617332908005951896325207071673904547777129682265206225651439919376804400292380903112437912614776255964694221981375146967079446870358004392507659451618379811859392049544036114915310782251072691486979809240946772142727012404377187409216756613634938900451232351668146089322400697993176017805338191849981933008410985993938760292601390911414526003720284872132411955424282101831204216104467404621635336900583664606591156298764745525068145003932941404131495400677602951005962253022823003631473824681059648442441324864573137437595096416168048024129351876204668135636877532814675538798871771836512893947195335061885003267607354388673368002074387849657014576090349857571243045102038730494854256702479339322809110526041538528994849203991091946129912491633289917998094380337879522093131466946149705939664152375949285890960489916121944989986384837022486672249148924678410206183364627416969576307632480235587975245253737035433882960862753427740016333434055083537048507374544819754722228975281083020898682633020285259923084168054539687911418297629988964576482765287504562854924265165217750799516259669229114977788962356670956627138482018191348321687995863652637620978285070099337294396784639879024914514222742527006363942327998483976739987154418554201562244154926653014515504685489258620276085761837129763358761215382565129633538141663949516556000264159186554850057052611431952919918807954522394649627635630178580896692226406235382898535867595990647008385687123810329591926494846250768992258419305480763620215089022149220528069842018350840586938493815498909445461977893029113576516775406232278298314033473276603952231603422824717528181818844304880921321933550869873395861276073670866652375555675803171490108477320096424318780070008797346032906278943553743564448851907191616455141155761939399690767415156402826543664026760095087523945507341556135867933066031744720924446513532366647649735400851967040771103640538150073486891798364049570606189535005089840913826869535090066783324472578712196604415284924840041850932811908963634175739897166596000759487800619164094854338758520657116541072260996288150123144377944008749301944744330784388995701842710004808305012177123560622895076269042856800047718893158089358515593863176652948089031267747029662545110861548958395087796755464137944895960527975209874813839762578592105756284401759349324162148339565350189196811389091843795734703269406342890087805846940352453479398080674273236297887100867175802531561302356064878709259865288416350972529537091114317204887747405539054009425375424119317944175137064689643861517718849867010341532542385911089624710885385808688837777258648564145934262121086647588489260031762345960769508849149662444156604419552086811989770240.000000


    is equal to (264-1)*216320. Expanding only the mantissa, this is 18446744073709551615*216320, which is only 20 significant digits.






    share|improve this answer



























      up vote
      2
      down vote













      You are probably used to thinking of numbers as some number times some power of 10. Floating point numbers are represented as some number times some power of 2. You can represent 102410 (100000000002) with just a single significant bit, even though it looks like it has three significant digits.



      The number you listed:



      1189731495357231765021263853030970205169063322294624200440323733891737005522970722616410290336528882853545697807495577314427443153670288434198125573853743678673593200706973263201915918282961524365529510646791086614311790632169778838896134786560600399148753433211454911160088679845154866512852340149773037600009125479393966223151383622417838542743917838138717805889487540575168226347659235576974805113725649020884855222494791399377585026011773549180099796226026859508558883608159846900235645132346594476384939859276456284579661772930407806609229102715046085388087959327781622986827547830768080040150694942303411728957777100335714010559775242124057347007386251660110828379119623008469277200965153500208474470792443848545912886723000619085126472111951361467527633519562927597957250278002980795904193139603021470997035276467445530922022679656280991498232083329641241038509239184734786121921697210543484287048353408113042573002216421348917347174234800714880751002064390517234247656004721768096486107994943415703476320643558624207443504424380566136017608837478165389027809576975977286860071487028287955567141404632615832623602762896316173978484254486860609948270867968048078702511858930838546584223040908805996294594586201903766048446790926002225410530775901065760671347200125846406957030257138960983757998926954553052368560758683179223113639519468850880771872104705203957587480013143131444254943919940175753169339392366881856189129931729104252921236835159922322050998001677102784035360140829296398115122877768135706045789343535451696539561254048846447169786893211671087229088082778350518228857646062218739702851655083720992349483334435228984751232753726636066213902281264706234075352071724058665079518217303463782631353393706774901950197841690441824738063162828586857741432581165364040218402724913393320949219498422442730427019873044536620350262386957804682003601447291997123095530057206141866974852846856186514832715974481203121946751686379343096189615107330065552421485195201762858595091051839472502863871632494167613804996319791441870254302706758495192008837915169401581740046711477877201459644461175204059453504764721807975761111720846273639279600339670470037613374509553184150073796412605047923251661354841291884211340823015473304754067072818763503617332908005951896325207071673904547777129682265206225651439919376804400292380903112437912614776255964694221981375146967079446870358004392507659451618379811859392049544036114915310782251072691486979809240946772142727012404377187409216756613634938900451232351668146089322400697993176017805338191849981933008410985993938760292601390911414526003720284872132411955424282101831204216104467404621635336900583664606591156298764745525068145003932941404131495400677602951005962253022823003631473824681059648442441324864573137437595096416168048024129351876204668135636877532814675538798871771836512893947195335061885003267607354388673368002074387849657014576090349857571243045102038730494854256702479339322809110526041538528994849203991091946129912491633289917998094380337879522093131466946149705939664152375949285890960489916121944989986384837022486672249148924678410206183364627416969576307632480235587975245253737035433882960862753427740016333434055083537048507374544819754722228975281083020898682633020285259923084168054539687911418297629988964576482765287504562854924265165217750799516259669229114977788962356670956627138482018191348321687995863652637620978285070099337294396784639879024914514222742527006363942327998483976739987154418554201562244154926653014515504685489258620276085761837129763358761215382565129633538141663949516556000264159186554850057052611431952919918807954522394649627635630178580896692226406235382898535867595990647008385687123810329591926494846250768992258419305480763620215089022149220528069842018350840586938493815498909445461977893029113576516775406232278298314033473276603952231603422824717528181818844304880921321933550869873395861276073670866652375555675803171490108477320096424318780070008797346032906278943553743564448851907191616455141155761939399690767415156402826543664026760095087523945507341556135867933066031744720924446513532366647649735400851967040771103640538150073486891798364049570606189535005089840913826869535090066783324472578712196604415284924840041850932811908963634175739897166596000759487800619164094854338758520657116541072260996288150123144377944008749301944744330784388995701842710004808305012177123560622895076269042856800047718893158089358515593863176652948089031267747029662545110861548958395087796755464137944895960527975209874813839762578592105756284401759349324162148339565350189196811389091843795734703269406342890087805846940352453479398080674273236297887100867175802531561302356064878709259865288416350972529537091114317204887747405539054009425375424119317944175137064689643861517718849867010341532542385911089624710885385808688837777258648564145934262121086647588489260031762345960769508849149662444156604419552086811989770240.000000


      is equal to (264-1)*216320. Expanding only the mantissa, this is 18446744073709551615*216320, which is only 20 significant digits.






      share|improve this answer

























        up vote
        2
        down vote










        up vote
        2
        down vote









        You are probably used to thinking of numbers as some number times some power of 10. Floating point numbers are represented as some number times some power of 2. You can represent 102410 (100000000002) with just a single significant bit, even though it looks like it has three significant digits.



        The number you listed:



        1189731495357231765021263853030970205169063322294624200440323733891737005522970722616410290336528882853545697807495577314427443153670288434198125573853743678673593200706973263201915918282961524365529510646791086614311790632169778838896134786560600399148753433211454911160088679845154866512852340149773037600009125479393966223151383622417838542743917838138717805889487540575168226347659235576974805113725649020884855222494791399377585026011773549180099796226026859508558883608159846900235645132346594476384939859276456284579661772930407806609229102715046085388087959327781622986827547830768080040150694942303411728957777100335714010559775242124057347007386251660110828379119623008469277200965153500208474470792443848545912886723000619085126472111951361467527633519562927597957250278002980795904193139603021470997035276467445530922022679656280991498232083329641241038509239184734786121921697210543484287048353408113042573002216421348917347174234800714880751002064390517234247656004721768096486107994943415703476320643558624207443504424380566136017608837478165389027809576975977286860071487028287955567141404632615832623602762896316173978484254486860609948270867968048078702511858930838546584223040908805996294594586201903766048446790926002225410530775901065760671347200125846406957030257138960983757998926954553052368560758683179223113639519468850880771872104705203957587480013143131444254943919940175753169339392366881856189129931729104252921236835159922322050998001677102784035360140829296398115122877768135706045789343535451696539561254048846447169786893211671087229088082778350518228857646062218739702851655083720992349483334435228984751232753726636066213902281264706234075352071724058665079518217303463782631353393706774901950197841690441824738063162828586857741432581165364040218402724913393320949219498422442730427019873044536620350262386957804682003601447291997123095530057206141866974852846856186514832715974481203121946751686379343096189615107330065552421485195201762858595091051839472502863871632494167613804996319791441870254302706758495192008837915169401581740046711477877201459644461175204059453504764721807975761111720846273639279600339670470037613374509553184150073796412605047923251661354841291884211340823015473304754067072818763503617332908005951896325207071673904547777129682265206225651439919376804400292380903112437912614776255964694221981375146967079446870358004392507659451618379811859392049544036114915310782251072691486979809240946772142727012404377187409216756613634938900451232351668146089322400697993176017805338191849981933008410985993938760292601390911414526003720284872132411955424282101831204216104467404621635336900583664606591156298764745525068145003932941404131495400677602951005962253022823003631473824681059648442441324864573137437595096416168048024129351876204668135636877532814675538798871771836512893947195335061885003267607354388673368002074387849657014576090349857571243045102038730494854256702479339322809110526041538528994849203991091946129912491633289917998094380337879522093131466946149705939664152375949285890960489916121944989986384837022486672249148924678410206183364627416969576307632480235587975245253737035433882960862753427740016333434055083537048507374544819754722228975281083020898682633020285259923084168054539687911418297629988964576482765287504562854924265165217750799516259669229114977788962356670956627138482018191348321687995863652637620978285070099337294396784639879024914514222742527006363942327998483976739987154418554201562244154926653014515504685489258620276085761837129763358761215382565129633538141663949516556000264159186554850057052611431952919918807954522394649627635630178580896692226406235382898535867595990647008385687123810329591926494846250768992258419305480763620215089022149220528069842018350840586938493815498909445461977893029113576516775406232278298314033473276603952231603422824717528181818844304880921321933550869873395861276073670866652375555675803171490108477320096424318780070008797346032906278943553743564448851907191616455141155761939399690767415156402826543664026760095087523945507341556135867933066031744720924446513532366647649735400851967040771103640538150073486891798364049570606189535005089840913826869535090066783324472578712196604415284924840041850932811908963634175739897166596000759487800619164094854338758520657116541072260996288150123144377944008749301944744330784388995701842710004808305012177123560622895076269042856800047718893158089358515593863176652948089031267747029662545110861548958395087796755464137944895960527975209874813839762578592105756284401759349324162148339565350189196811389091843795734703269406342890087805846940352453479398080674273236297887100867175802531561302356064878709259865288416350972529537091114317204887747405539054009425375424119317944175137064689643861517718849867010341532542385911089624710885385808688837777258648564145934262121086647588489260031762345960769508849149662444156604419552086811989770240.000000


        is equal to (264-1)*216320. Expanding only the mantissa, this is 18446744073709551615*216320, which is only 20 significant digits.






        share|improve this answer















        You are probably used to thinking of numbers as some number times some power of 10. Floating point numbers are represented as some number times some power of 2. You can represent 102410 (100000000002) with just a single significant bit, even though it looks like it has three significant digits.



        The number you listed:



        1189731495357231765021263853030970205169063322294624200440323733891737005522970722616410290336528882853545697807495577314427443153670288434198125573853743678673593200706973263201915918282961524365529510646791086614311790632169778838896134786560600399148753433211454911160088679845154866512852340149773037600009125479393966223151383622417838542743917838138717805889487540575168226347659235576974805113725649020884855222494791399377585026011773549180099796226026859508558883608159846900235645132346594476384939859276456284579661772930407806609229102715046085388087959327781622986827547830768080040150694942303411728957777100335714010559775242124057347007386251660110828379119623008469277200965153500208474470792443848545912886723000619085126472111951361467527633519562927597957250278002980795904193139603021470997035276467445530922022679656280991498232083329641241038509239184734786121921697210543484287048353408113042573002216421348917347174234800714880751002064390517234247656004721768096486107994943415703476320643558624207443504424380566136017608837478165389027809576975977286860071487028287955567141404632615832623602762896316173978484254486860609948270867968048078702511858930838546584223040908805996294594586201903766048446790926002225410530775901065760671347200125846406957030257138960983757998926954553052368560758683179223113639519468850880771872104705203957587480013143131444254943919940175753169339392366881856189129931729104252921236835159922322050998001677102784035360140829296398115122877768135706045789343535451696539561254048846447169786893211671087229088082778350518228857646062218739702851655083720992349483334435228984751232753726636066213902281264706234075352071724058665079518217303463782631353393706774901950197841690441824738063162828586857741432581165364040218402724913393320949219498422442730427019873044536620350262386957804682003601447291997123095530057206141866974852846856186514832715974481203121946751686379343096189615107330065552421485195201762858595091051839472502863871632494167613804996319791441870254302706758495192008837915169401581740046711477877201459644461175204059453504764721807975761111720846273639279600339670470037613374509553184150073796412605047923251661354841291884211340823015473304754067072818763503617332908005951896325207071673904547777129682265206225651439919376804400292380903112437912614776255964694221981375146967079446870358004392507659451618379811859392049544036114915310782251072691486979809240946772142727012404377187409216756613634938900451232351668146089322400697993176017805338191849981933008410985993938760292601390911414526003720284872132411955424282101831204216104467404621635336900583664606591156298764745525068145003932941404131495400677602951005962253022823003631473824681059648442441324864573137437595096416168048024129351876204668135636877532814675538798871771836512893947195335061885003267607354388673368002074387849657014576090349857571243045102038730494854256702479339322809110526041538528994849203991091946129912491633289917998094380337879522093131466946149705939664152375949285890960489916121944989986384837022486672249148924678410206183364627416969576307632480235587975245253737035433882960862753427740016333434055083537048507374544819754722228975281083020898682633020285259923084168054539687911418297629988964576482765287504562854924265165217750799516259669229114977788962356670956627138482018191348321687995863652637620978285070099337294396784639879024914514222742527006363942327998483976739987154418554201562244154926653014515504685489258620276085761837129763358761215382565129633538141663949516556000264159186554850057052611431952919918807954522394649627635630178580896692226406235382898535867595990647008385687123810329591926494846250768992258419305480763620215089022149220528069842018350840586938493815498909445461977893029113576516775406232278298314033473276603952231603422824717528181818844304880921321933550869873395861276073670866652375555675803171490108477320096424318780070008797346032906278943553743564448851907191616455141155761939399690767415156402826543664026760095087523945507341556135867933066031744720924446513532366647649735400851967040771103640538150073486891798364049570606189535005089840913826869535090066783324472578712196604415284924840041850932811908963634175739897166596000759487800619164094854338758520657116541072260996288150123144377944008749301944744330784388995701842710004808305012177123560622895076269042856800047718893158089358515593863176652948089031267747029662545110861548958395087796755464137944895960527975209874813839762578592105756284401759349324162148339565350189196811389091843795734703269406342890087805846940352453479398080674273236297887100867175802531561302356064878709259865288416350972529537091114317204887747405539054009425375424119317944175137064689643861517718849867010341532542385911089624710885385808688837777258648564145934262121086647588489260031762345960769508849149662444156604419552086811989770240.000000


        is equal to (264-1)*216320. Expanding only the mantissa, this is 18446744073709551615*216320, which is only 20 significant digits.







        share|improve this answer















        share|improve this answer



        share|improve this answer








        edited Apr 19 at 15:34


























        answered Apr 19 at 15:28









        Fox

        4,68111131




        4,68111131






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2funix.stackexchange.com%2fquestions%2f438753%2fwhy-is-ldbl-max-1-18973e4932-and-how-is-this-possible%23new-answer', 'question_page');

            );

            Post as a guest













































































            Popular posts from this blog

            How to check contact read email or not when send email to Individual?

            How many registers does an x86_64 CPU actually have?

            Nur Jahan