Naive Monte Carlo, MCMC and their use in Bayesian Theory

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1












$begingroup$


So let's suppose I have a random variable X which follows a PDF fX(x) which is known.
I can use the Naive Monte Carlo method (with unfiltered random sampling) to obtain n samples of fX(x) and get empirical PDF and estimates of its parameters.



Now suppose we have three random variables (X, Y and Z).



First case:
Suppose we know the relationship (function) M between X, Y and Z so that Z=M(X,Y). Suppose we know the marginals of X and Y and the covariance matrix between X and Y.
In this case we can use Naive Monte Carlo method to get empirical PDF of Z and estimates of its parameters.



Second case:
2.A
Suppose we only know the marginals of X and Y and how the PDF of Z is related to the PDFs of X and Y. In this case we can get the empirical PDF of Z and estimates of its parameters directly (although not knowing M). Although I'm not sure how the dependency between X and Y is taken into account...



2.B
Suppose we only know the marginals of X and Y and how the PDF of Z is related to the PDFs of X and Y (up to a normalizing constant). This in the context of Bayesian Theory is equivalent of knowing the prior and the likelihood and the Bayes rule.
In this case we can no longer use the Naive Monte Carlo method to get empirical PDF of Z and estimates of its parameters since we don't know M(X,Y). Here we need to resort to MCMC.



Is the above reasoning right?



Third case:
Suppose we only know the marginals of X and Y, and some observations of Z. What methods can one apply to estimate not only the PDF of Z but also the function M assuming the marginals of X and Y are general and representative.










share|cite|improve this question











$endgroup$


















    1












    $begingroup$


    So let's suppose I have a random variable X which follows a PDF fX(x) which is known.
    I can use the Naive Monte Carlo method (with unfiltered random sampling) to obtain n samples of fX(x) and get empirical PDF and estimates of its parameters.



    Now suppose we have three random variables (X, Y and Z).



    First case:
    Suppose we know the relationship (function) M between X, Y and Z so that Z=M(X,Y). Suppose we know the marginals of X and Y and the covariance matrix between X and Y.
    In this case we can use Naive Monte Carlo method to get empirical PDF of Z and estimates of its parameters.



    Second case:
    2.A
    Suppose we only know the marginals of X and Y and how the PDF of Z is related to the PDFs of X and Y. In this case we can get the empirical PDF of Z and estimates of its parameters directly (although not knowing M). Although I'm not sure how the dependency between X and Y is taken into account...



    2.B
    Suppose we only know the marginals of X and Y and how the PDF of Z is related to the PDFs of X and Y (up to a normalizing constant). This in the context of Bayesian Theory is equivalent of knowing the prior and the likelihood and the Bayes rule.
    In this case we can no longer use the Naive Monte Carlo method to get empirical PDF of Z and estimates of its parameters since we don't know M(X,Y). Here we need to resort to MCMC.



    Is the above reasoning right?



    Third case:
    Suppose we only know the marginals of X and Y, and some observations of Z. What methods can one apply to estimate not only the PDF of Z but also the function M assuming the marginals of X and Y are general and representative.










    share|cite|improve this question











    $endgroup$














      1












      1








      1


      2



      $begingroup$


      So let's suppose I have a random variable X which follows a PDF fX(x) which is known.
      I can use the Naive Monte Carlo method (with unfiltered random sampling) to obtain n samples of fX(x) and get empirical PDF and estimates of its parameters.



      Now suppose we have three random variables (X, Y and Z).



      First case:
      Suppose we know the relationship (function) M between X, Y and Z so that Z=M(X,Y). Suppose we know the marginals of X and Y and the covariance matrix between X and Y.
      In this case we can use Naive Monte Carlo method to get empirical PDF of Z and estimates of its parameters.



      Second case:
      2.A
      Suppose we only know the marginals of X and Y and how the PDF of Z is related to the PDFs of X and Y. In this case we can get the empirical PDF of Z and estimates of its parameters directly (although not knowing M). Although I'm not sure how the dependency between X and Y is taken into account...



      2.B
      Suppose we only know the marginals of X and Y and how the PDF of Z is related to the PDFs of X and Y (up to a normalizing constant). This in the context of Bayesian Theory is equivalent of knowing the prior and the likelihood and the Bayes rule.
      In this case we can no longer use the Naive Monte Carlo method to get empirical PDF of Z and estimates of its parameters since we don't know M(X,Y). Here we need to resort to MCMC.



      Is the above reasoning right?



      Third case:
      Suppose we only know the marginals of X and Y, and some observations of Z. What methods can one apply to estimate not only the PDF of Z but also the function M assuming the marginals of X and Y are general and representative.










      share|cite|improve this question











      $endgroup$




      So let's suppose I have a random variable X which follows a PDF fX(x) which is known.
      I can use the Naive Monte Carlo method (with unfiltered random sampling) to obtain n samples of fX(x) and get empirical PDF and estimates of its parameters.



      Now suppose we have three random variables (X, Y and Z).



      First case:
      Suppose we know the relationship (function) M between X, Y and Z so that Z=M(X,Y). Suppose we know the marginals of X and Y and the covariance matrix between X and Y.
      In this case we can use Naive Monte Carlo method to get empirical PDF of Z and estimates of its parameters.



      Second case:
      2.A
      Suppose we only know the marginals of X and Y and how the PDF of Z is related to the PDFs of X and Y. In this case we can get the empirical PDF of Z and estimates of its parameters directly (although not knowing M). Although I'm not sure how the dependency between X and Y is taken into account...



      2.B
      Suppose we only know the marginals of X and Y and how the PDF of Z is related to the PDFs of X and Y (up to a normalizing constant). This in the context of Bayesian Theory is equivalent of knowing the prior and the likelihood and the Bayes rule.
      In this case we can no longer use the Naive Monte Carlo method to get empirical PDF of Z and estimates of its parameters since we don't know M(X,Y). Here we need to resort to MCMC.



      Is the above reasoning right?



      Third case:
      Suppose we only know the marginals of X and Y, and some observations of Z. What methods can one apply to estimate not only the PDF of Z but also the function M assuming the marginals of X and Y are general and representative.







      bayesian mcmc monte-carlo






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 17 at 16:11







      jpcgandre

















      asked Mar 17 at 15:19









      jpcgandrejpcgandre

      1848




      1848




















          1 Answer
          1






          active

          oldest

          votes


















          6












          $begingroup$

          As a preliminary, let me point out that the issue of reconstituting the joint from the marginals is a constant theme on this forum, the answer being invariably that it is not possible without further assumptions.




          "Suppose we know the marginals of $X$ and $Y$ and the covariance matrix
          between $X$ and $Y$."




          This information is not enough for simulating $(X,Y)$, except in the bivariate Normal setting, and other parameterised cases [like exponential families] when the covariance matrix suffices to define the joint distribution. In general, the distribution of $Z$ is given by
          $$mathbb P_Z(Zin mathcal A)=mathbb P_X,Y(M(X,Y)in A)=mathbb P_X,Y((X,Y)in M^-1(mathcal A))=int_M^-1(mathcal A) p_X,Y(x,y)textd(x,y)$$
          and hence depends on the joint distribution of $(X,Y)$.




          "...we only know the marginals of $X$ and $Y$ and how the PDF of $Z$
          is related to the PDFs of $X$ and $Y$. In this case we can get the
          empirical PDF of $Z$"




          This question is quite unclear or too vague, but in general wrong if $X$, $Y$, and $Z$ are dependent (for the same reason as above). If for instance it is known than $p_z=Phi(p_X,p_Y)$ in the sense that $p_Z(z)$ can computed for all $z$'s then it is possible to build a Monte Carlo strategy based on this information. Further, the empirical pdf of $Z$ is unrelated to the true pdfs of $X$ and $Y$, but requires a sample of $Z$'s.




          "This in the context of Bayesian Theory is equivalent of knowing the
          prior and the likelihood and the Bayes rule."




          In Bayesian theory there are two random variables, the parameter $theta$ and the experiment random variable $X$ (called the observation once realised as $x$). The likelihood function is a conditional density of the experiment random variable given the parameter random variable, not a marginal. And Bayes rule gives the conditional density of the (same) parameter random variable $theta$ given the experiment random variable, not a marginal.




          "...we can no longer use the Naive Monte Carlo method to get empirical
          PDF of $Z$"




          This intuition is far from 100% correct as the knowledge of the posterior density up to a constant may be sufficient to run (a) analytical calculations (e.g., with conjugate priors) and (b) regular Monte Carlo simulations. MCMC is not a sure solution for all cases (as in the doubly intractable likelihood problem).




          "Suppose we only know the marginals of $X$ and $Y$, and some observations
          of $Z$. What methods can one apply to estimate not only the PDF of $Z$ but
          also the function $M$ assuming the marginals of $X$ and $Y$ are general and
          representative."




          This question is once again too vague. Observing $Z$ allows for the estimation of its PDF by non-parametric tools, but if $X$ and $Y$ are not observed, it is difficult to imagine estimating $M$ solely from the $Z$'s and the marginal densities.






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Hi! thank you for the time in helping me surf this wave. Regarding your first answer, I'm surprised since in all structural engineering reliability problems I studied and apply this is exactly what is done. You have the mathematical/numerical model that relates input variables with output variables and you estimate the distribution of the latter based on the marginals and covariance matrix, even if the marginals are not normally distributed. If this is not valid in general then I kindly ask you for a reference since this will potentially have a deep impact in civil engineering.
            $endgroup$
            – jpcgandre
            Mar 17 at 17:36










          • $begingroup$
            Regarding the answer to the Q2.A I agree, that is why I wrote "Although I'm not sure how the dependency between X and Y is taken into account...". Regarding Q2.B, I agree although for the purposes of the question, for me a conditional probability is still a probability function as the marginals are too. So given this I believe the logic I put forward is still applicable. About what you describe about conjugate priors, can you comment on Greenparker answer to stats.stackexchange.com/questions/275641/…
            $endgroup$
            – jpcgandre
            Mar 17 at 17:36










          • $begingroup$
            And if you have time, please comment/criticize my Q #3. Thank you
            $endgroup$
            – jpcgandre
            Mar 17 at 17:36










          • $begingroup$
            "It may be a matter of wording: if given only fX, fY, and ΣXY, with no further information, there is no single joint distribution with these characteristics." But (a big but indeed) if you know the function that relates observations of X and Y with outcomes of Z then you can estimate Z based on this function and the probabilistic marginals of X and Y, right?
            $endgroup$
            – jpcgandre
            Mar 17 at 18:19











          • $begingroup$
            No since you first need to generate $(X,Y)$ pairwise before deducing $Z$.
            $endgroup$
            – Xi'an
            Mar 17 at 18:26












          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "65"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f398003%2fnaive-monte-carlo-mcmc-and-their-use-in-bayesian-theory%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          6












          $begingroup$

          As a preliminary, let me point out that the issue of reconstituting the joint from the marginals is a constant theme on this forum, the answer being invariably that it is not possible without further assumptions.




          "Suppose we know the marginals of $X$ and $Y$ and the covariance matrix
          between $X$ and $Y$."




          This information is not enough for simulating $(X,Y)$, except in the bivariate Normal setting, and other parameterised cases [like exponential families] when the covariance matrix suffices to define the joint distribution. In general, the distribution of $Z$ is given by
          $$mathbb P_Z(Zin mathcal A)=mathbb P_X,Y(M(X,Y)in A)=mathbb P_X,Y((X,Y)in M^-1(mathcal A))=int_M^-1(mathcal A) p_X,Y(x,y)textd(x,y)$$
          and hence depends on the joint distribution of $(X,Y)$.




          "...we only know the marginals of $X$ and $Y$ and how the PDF of $Z$
          is related to the PDFs of $X$ and $Y$. In this case we can get the
          empirical PDF of $Z$"




          This question is quite unclear or too vague, but in general wrong if $X$, $Y$, and $Z$ are dependent (for the same reason as above). If for instance it is known than $p_z=Phi(p_X,p_Y)$ in the sense that $p_Z(z)$ can computed for all $z$'s then it is possible to build a Monte Carlo strategy based on this information. Further, the empirical pdf of $Z$ is unrelated to the true pdfs of $X$ and $Y$, but requires a sample of $Z$'s.




          "This in the context of Bayesian Theory is equivalent of knowing the
          prior and the likelihood and the Bayes rule."




          In Bayesian theory there are two random variables, the parameter $theta$ and the experiment random variable $X$ (called the observation once realised as $x$). The likelihood function is a conditional density of the experiment random variable given the parameter random variable, not a marginal. And Bayes rule gives the conditional density of the (same) parameter random variable $theta$ given the experiment random variable, not a marginal.




          "...we can no longer use the Naive Monte Carlo method to get empirical
          PDF of $Z$"




          This intuition is far from 100% correct as the knowledge of the posterior density up to a constant may be sufficient to run (a) analytical calculations (e.g., with conjugate priors) and (b) regular Monte Carlo simulations. MCMC is not a sure solution for all cases (as in the doubly intractable likelihood problem).




          "Suppose we only know the marginals of $X$ and $Y$, and some observations
          of $Z$. What methods can one apply to estimate not only the PDF of $Z$ but
          also the function $M$ assuming the marginals of $X$ and $Y$ are general and
          representative."




          This question is once again too vague. Observing $Z$ allows for the estimation of its PDF by non-parametric tools, but if $X$ and $Y$ are not observed, it is difficult to imagine estimating $M$ solely from the $Z$'s and the marginal densities.






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Hi! thank you for the time in helping me surf this wave. Regarding your first answer, I'm surprised since in all structural engineering reliability problems I studied and apply this is exactly what is done. You have the mathematical/numerical model that relates input variables with output variables and you estimate the distribution of the latter based on the marginals and covariance matrix, even if the marginals are not normally distributed. If this is not valid in general then I kindly ask you for a reference since this will potentially have a deep impact in civil engineering.
            $endgroup$
            – jpcgandre
            Mar 17 at 17:36










          • $begingroup$
            Regarding the answer to the Q2.A I agree, that is why I wrote "Although I'm not sure how the dependency between X and Y is taken into account...". Regarding Q2.B, I agree although for the purposes of the question, for me a conditional probability is still a probability function as the marginals are too. So given this I believe the logic I put forward is still applicable. About what you describe about conjugate priors, can you comment on Greenparker answer to stats.stackexchange.com/questions/275641/…
            $endgroup$
            – jpcgandre
            Mar 17 at 17:36










          • $begingroup$
            And if you have time, please comment/criticize my Q #3. Thank you
            $endgroup$
            – jpcgandre
            Mar 17 at 17:36










          • $begingroup$
            "It may be a matter of wording: if given only fX, fY, and ΣXY, with no further information, there is no single joint distribution with these characteristics." But (a big but indeed) if you know the function that relates observations of X and Y with outcomes of Z then you can estimate Z based on this function and the probabilistic marginals of X and Y, right?
            $endgroup$
            – jpcgandre
            Mar 17 at 18:19











          • $begingroup$
            No since you first need to generate $(X,Y)$ pairwise before deducing $Z$.
            $endgroup$
            – Xi'an
            Mar 17 at 18:26
















          6












          $begingroup$

          As a preliminary, let me point out that the issue of reconstituting the joint from the marginals is a constant theme on this forum, the answer being invariably that it is not possible without further assumptions.




          "Suppose we know the marginals of $X$ and $Y$ and the covariance matrix
          between $X$ and $Y$."




          This information is not enough for simulating $(X,Y)$, except in the bivariate Normal setting, and other parameterised cases [like exponential families] when the covariance matrix suffices to define the joint distribution. In general, the distribution of $Z$ is given by
          $$mathbb P_Z(Zin mathcal A)=mathbb P_X,Y(M(X,Y)in A)=mathbb P_X,Y((X,Y)in M^-1(mathcal A))=int_M^-1(mathcal A) p_X,Y(x,y)textd(x,y)$$
          and hence depends on the joint distribution of $(X,Y)$.




          "...we only know the marginals of $X$ and $Y$ and how the PDF of $Z$
          is related to the PDFs of $X$ and $Y$. In this case we can get the
          empirical PDF of $Z$"




          This question is quite unclear or too vague, but in general wrong if $X$, $Y$, and $Z$ are dependent (for the same reason as above). If for instance it is known than $p_z=Phi(p_X,p_Y)$ in the sense that $p_Z(z)$ can computed for all $z$'s then it is possible to build a Monte Carlo strategy based on this information. Further, the empirical pdf of $Z$ is unrelated to the true pdfs of $X$ and $Y$, but requires a sample of $Z$'s.




          "This in the context of Bayesian Theory is equivalent of knowing the
          prior and the likelihood and the Bayes rule."




          In Bayesian theory there are two random variables, the parameter $theta$ and the experiment random variable $X$ (called the observation once realised as $x$). The likelihood function is a conditional density of the experiment random variable given the parameter random variable, not a marginal. And Bayes rule gives the conditional density of the (same) parameter random variable $theta$ given the experiment random variable, not a marginal.




          "...we can no longer use the Naive Monte Carlo method to get empirical
          PDF of $Z$"




          This intuition is far from 100% correct as the knowledge of the posterior density up to a constant may be sufficient to run (a) analytical calculations (e.g., with conjugate priors) and (b) regular Monte Carlo simulations. MCMC is not a sure solution for all cases (as in the doubly intractable likelihood problem).




          "Suppose we only know the marginals of $X$ and $Y$, and some observations
          of $Z$. What methods can one apply to estimate not only the PDF of $Z$ but
          also the function $M$ assuming the marginals of $X$ and $Y$ are general and
          representative."




          This question is once again too vague. Observing $Z$ allows for the estimation of its PDF by non-parametric tools, but if $X$ and $Y$ are not observed, it is difficult to imagine estimating $M$ solely from the $Z$'s and the marginal densities.






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Hi! thank you for the time in helping me surf this wave. Regarding your first answer, I'm surprised since in all structural engineering reliability problems I studied and apply this is exactly what is done. You have the mathematical/numerical model that relates input variables with output variables and you estimate the distribution of the latter based on the marginals and covariance matrix, even if the marginals are not normally distributed. If this is not valid in general then I kindly ask you for a reference since this will potentially have a deep impact in civil engineering.
            $endgroup$
            – jpcgandre
            Mar 17 at 17:36










          • $begingroup$
            Regarding the answer to the Q2.A I agree, that is why I wrote "Although I'm not sure how the dependency between X and Y is taken into account...". Regarding Q2.B, I agree although for the purposes of the question, for me a conditional probability is still a probability function as the marginals are too. So given this I believe the logic I put forward is still applicable. About what you describe about conjugate priors, can you comment on Greenparker answer to stats.stackexchange.com/questions/275641/…
            $endgroup$
            – jpcgandre
            Mar 17 at 17:36










          • $begingroup$
            And if you have time, please comment/criticize my Q #3. Thank you
            $endgroup$
            – jpcgandre
            Mar 17 at 17:36










          • $begingroup$
            "It may be a matter of wording: if given only fX, fY, and ΣXY, with no further information, there is no single joint distribution with these characteristics." But (a big but indeed) if you know the function that relates observations of X and Y with outcomes of Z then you can estimate Z based on this function and the probabilistic marginals of X and Y, right?
            $endgroup$
            – jpcgandre
            Mar 17 at 18:19











          • $begingroup$
            No since you first need to generate $(X,Y)$ pairwise before deducing $Z$.
            $endgroup$
            – Xi'an
            Mar 17 at 18:26














          6












          6








          6





          $begingroup$

          As a preliminary, let me point out that the issue of reconstituting the joint from the marginals is a constant theme on this forum, the answer being invariably that it is not possible without further assumptions.




          "Suppose we know the marginals of $X$ and $Y$ and the covariance matrix
          between $X$ and $Y$."




          This information is not enough for simulating $(X,Y)$, except in the bivariate Normal setting, and other parameterised cases [like exponential families] when the covariance matrix suffices to define the joint distribution. In general, the distribution of $Z$ is given by
          $$mathbb P_Z(Zin mathcal A)=mathbb P_X,Y(M(X,Y)in A)=mathbb P_X,Y((X,Y)in M^-1(mathcal A))=int_M^-1(mathcal A) p_X,Y(x,y)textd(x,y)$$
          and hence depends on the joint distribution of $(X,Y)$.




          "...we only know the marginals of $X$ and $Y$ and how the PDF of $Z$
          is related to the PDFs of $X$ and $Y$. In this case we can get the
          empirical PDF of $Z$"




          This question is quite unclear or too vague, but in general wrong if $X$, $Y$, and $Z$ are dependent (for the same reason as above). If for instance it is known than $p_z=Phi(p_X,p_Y)$ in the sense that $p_Z(z)$ can computed for all $z$'s then it is possible to build a Monte Carlo strategy based on this information. Further, the empirical pdf of $Z$ is unrelated to the true pdfs of $X$ and $Y$, but requires a sample of $Z$'s.




          "This in the context of Bayesian Theory is equivalent of knowing the
          prior and the likelihood and the Bayes rule."




          In Bayesian theory there are two random variables, the parameter $theta$ and the experiment random variable $X$ (called the observation once realised as $x$). The likelihood function is a conditional density of the experiment random variable given the parameter random variable, not a marginal. And Bayes rule gives the conditional density of the (same) parameter random variable $theta$ given the experiment random variable, not a marginal.




          "...we can no longer use the Naive Monte Carlo method to get empirical
          PDF of $Z$"




          This intuition is far from 100% correct as the knowledge of the posterior density up to a constant may be sufficient to run (a) analytical calculations (e.g., with conjugate priors) and (b) regular Monte Carlo simulations. MCMC is not a sure solution for all cases (as in the doubly intractable likelihood problem).




          "Suppose we only know the marginals of $X$ and $Y$, and some observations
          of $Z$. What methods can one apply to estimate not only the PDF of $Z$ but
          also the function $M$ assuming the marginals of $X$ and $Y$ are general and
          representative."




          This question is once again too vague. Observing $Z$ allows for the estimation of its PDF by non-parametric tools, but if $X$ and $Y$ are not observed, it is difficult to imagine estimating $M$ solely from the $Z$'s and the marginal densities.






          share|cite|improve this answer











          $endgroup$



          As a preliminary, let me point out that the issue of reconstituting the joint from the marginals is a constant theme on this forum, the answer being invariably that it is not possible without further assumptions.




          "Suppose we know the marginals of $X$ and $Y$ and the covariance matrix
          between $X$ and $Y$."




          This information is not enough for simulating $(X,Y)$, except in the bivariate Normal setting, and other parameterised cases [like exponential families] when the covariance matrix suffices to define the joint distribution. In general, the distribution of $Z$ is given by
          $$mathbb P_Z(Zin mathcal A)=mathbb P_X,Y(M(X,Y)in A)=mathbb P_X,Y((X,Y)in M^-1(mathcal A))=int_M^-1(mathcal A) p_X,Y(x,y)textd(x,y)$$
          and hence depends on the joint distribution of $(X,Y)$.




          "...we only know the marginals of $X$ and $Y$ and how the PDF of $Z$
          is related to the PDFs of $X$ and $Y$. In this case we can get the
          empirical PDF of $Z$"




          This question is quite unclear or too vague, but in general wrong if $X$, $Y$, and $Z$ are dependent (for the same reason as above). If for instance it is known than $p_z=Phi(p_X,p_Y)$ in the sense that $p_Z(z)$ can computed for all $z$'s then it is possible to build a Monte Carlo strategy based on this information. Further, the empirical pdf of $Z$ is unrelated to the true pdfs of $X$ and $Y$, but requires a sample of $Z$'s.




          "This in the context of Bayesian Theory is equivalent of knowing the
          prior and the likelihood and the Bayes rule."




          In Bayesian theory there are two random variables, the parameter $theta$ and the experiment random variable $X$ (called the observation once realised as $x$). The likelihood function is a conditional density of the experiment random variable given the parameter random variable, not a marginal. And Bayes rule gives the conditional density of the (same) parameter random variable $theta$ given the experiment random variable, not a marginal.




          "...we can no longer use the Naive Monte Carlo method to get empirical
          PDF of $Z$"




          This intuition is far from 100% correct as the knowledge of the posterior density up to a constant may be sufficient to run (a) analytical calculations (e.g., with conjugate priors) and (b) regular Monte Carlo simulations. MCMC is not a sure solution for all cases (as in the doubly intractable likelihood problem).




          "Suppose we only know the marginals of $X$ and $Y$, and some observations
          of $Z$. What methods can one apply to estimate not only the PDF of $Z$ but
          also the function $M$ assuming the marginals of $X$ and $Y$ are general and
          representative."




          This question is once again too vague. Observing $Z$ allows for the estimation of its PDF by non-parametric tools, but if $X$ and $Y$ are not observed, it is difficult to imagine estimating $M$ solely from the $Z$'s and the marginal densities.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Mar 18 at 7:12

























          answered Mar 17 at 17:01









          Xi'anXi'an

          59.5k897368




          59.5k897368







          • 1




            $begingroup$
            Hi! thank you for the time in helping me surf this wave. Regarding your first answer, I'm surprised since in all structural engineering reliability problems I studied and apply this is exactly what is done. You have the mathematical/numerical model that relates input variables with output variables and you estimate the distribution of the latter based on the marginals and covariance matrix, even if the marginals are not normally distributed. If this is not valid in general then I kindly ask you for a reference since this will potentially have a deep impact in civil engineering.
            $endgroup$
            – jpcgandre
            Mar 17 at 17:36










          • $begingroup$
            Regarding the answer to the Q2.A I agree, that is why I wrote "Although I'm not sure how the dependency between X and Y is taken into account...". Regarding Q2.B, I agree although for the purposes of the question, for me a conditional probability is still a probability function as the marginals are too. So given this I believe the logic I put forward is still applicable. About what you describe about conjugate priors, can you comment on Greenparker answer to stats.stackexchange.com/questions/275641/…
            $endgroup$
            – jpcgandre
            Mar 17 at 17:36










          • $begingroup$
            And if you have time, please comment/criticize my Q #3. Thank you
            $endgroup$
            – jpcgandre
            Mar 17 at 17:36










          • $begingroup$
            "It may be a matter of wording: if given only fX, fY, and ΣXY, with no further information, there is no single joint distribution with these characteristics." But (a big but indeed) if you know the function that relates observations of X and Y with outcomes of Z then you can estimate Z based on this function and the probabilistic marginals of X and Y, right?
            $endgroup$
            – jpcgandre
            Mar 17 at 18:19











          • $begingroup$
            No since you first need to generate $(X,Y)$ pairwise before deducing $Z$.
            $endgroup$
            – Xi'an
            Mar 17 at 18:26













          • 1




            $begingroup$
            Hi! thank you for the time in helping me surf this wave. Regarding your first answer, I'm surprised since in all structural engineering reliability problems I studied and apply this is exactly what is done. You have the mathematical/numerical model that relates input variables with output variables and you estimate the distribution of the latter based on the marginals and covariance matrix, even if the marginals are not normally distributed. If this is not valid in general then I kindly ask you for a reference since this will potentially have a deep impact in civil engineering.
            $endgroup$
            – jpcgandre
            Mar 17 at 17:36










          • $begingroup$
            Regarding the answer to the Q2.A I agree, that is why I wrote "Although I'm not sure how the dependency between X and Y is taken into account...". Regarding Q2.B, I agree although for the purposes of the question, for me a conditional probability is still a probability function as the marginals are too. So given this I believe the logic I put forward is still applicable. About what you describe about conjugate priors, can you comment on Greenparker answer to stats.stackexchange.com/questions/275641/…
            $endgroup$
            – jpcgandre
            Mar 17 at 17:36










          • $begingroup$
            And if you have time, please comment/criticize my Q #3. Thank you
            $endgroup$
            – jpcgandre
            Mar 17 at 17:36










          • $begingroup$
            "It may be a matter of wording: if given only fX, fY, and ΣXY, with no further information, there is no single joint distribution with these characteristics." But (a big but indeed) if you know the function that relates observations of X and Y with outcomes of Z then you can estimate Z based on this function and the probabilistic marginals of X and Y, right?
            $endgroup$
            – jpcgandre
            Mar 17 at 18:19











          • $begingroup$
            No since you first need to generate $(X,Y)$ pairwise before deducing $Z$.
            $endgroup$
            – Xi'an
            Mar 17 at 18:26








          1




          1




          $begingroup$
          Hi! thank you for the time in helping me surf this wave. Regarding your first answer, I'm surprised since in all structural engineering reliability problems I studied and apply this is exactly what is done. You have the mathematical/numerical model that relates input variables with output variables and you estimate the distribution of the latter based on the marginals and covariance matrix, even if the marginals are not normally distributed. If this is not valid in general then I kindly ask you for a reference since this will potentially have a deep impact in civil engineering.
          $endgroup$
          – jpcgandre
          Mar 17 at 17:36




          $begingroup$
          Hi! thank you for the time in helping me surf this wave. Regarding your first answer, I'm surprised since in all structural engineering reliability problems I studied and apply this is exactly what is done. You have the mathematical/numerical model that relates input variables with output variables and you estimate the distribution of the latter based on the marginals and covariance matrix, even if the marginals are not normally distributed. If this is not valid in general then I kindly ask you for a reference since this will potentially have a deep impact in civil engineering.
          $endgroup$
          – jpcgandre
          Mar 17 at 17:36












          $begingroup$
          Regarding the answer to the Q2.A I agree, that is why I wrote "Although I'm not sure how the dependency between X and Y is taken into account...". Regarding Q2.B, I agree although for the purposes of the question, for me a conditional probability is still a probability function as the marginals are too. So given this I believe the logic I put forward is still applicable. About what you describe about conjugate priors, can you comment on Greenparker answer to stats.stackexchange.com/questions/275641/…
          $endgroup$
          – jpcgandre
          Mar 17 at 17:36




          $begingroup$
          Regarding the answer to the Q2.A I agree, that is why I wrote "Although I'm not sure how the dependency between X and Y is taken into account...". Regarding Q2.B, I agree although for the purposes of the question, for me a conditional probability is still a probability function as the marginals are too. So given this I believe the logic I put forward is still applicable. About what you describe about conjugate priors, can you comment on Greenparker answer to stats.stackexchange.com/questions/275641/…
          $endgroup$
          – jpcgandre
          Mar 17 at 17:36












          $begingroup$
          And if you have time, please comment/criticize my Q #3. Thank you
          $endgroup$
          – jpcgandre
          Mar 17 at 17:36




          $begingroup$
          And if you have time, please comment/criticize my Q #3. Thank you
          $endgroup$
          – jpcgandre
          Mar 17 at 17:36












          $begingroup$
          "It may be a matter of wording: if given only fX, fY, and ΣXY, with no further information, there is no single joint distribution with these characteristics." But (a big but indeed) if you know the function that relates observations of X and Y with outcomes of Z then you can estimate Z based on this function and the probabilistic marginals of X and Y, right?
          $endgroup$
          – jpcgandre
          Mar 17 at 18:19





          $begingroup$
          "It may be a matter of wording: if given only fX, fY, and ΣXY, with no further information, there is no single joint distribution with these characteristics." But (a big but indeed) if you know the function that relates observations of X and Y with outcomes of Z then you can estimate Z based on this function and the probabilistic marginals of X and Y, right?
          $endgroup$
          – jpcgandre
          Mar 17 at 18:19













          $begingroup$
          No since you first need to generate $(X,Y)$ pairwise before deducing $Z$.
          $endgroup$
          – Xi'an
          Mar 17 at 18:26





          $begingroup$
          No since you first need to generate $(X,Y)$ pairwise before deducing $Z$.
          $endgroup$
          – Xi'an
          Mar 17 at 18:26


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Cross Validated!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f398003%2fnaive-monte-carlo-mcmc-and-their-use-in-bayesian-theory%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown






          Popular posts from this blog

          How to check contact read email or not when send email to Individual?

          How many registers does an x86_64 CPU actually have?

          Nur Jahan