How to determine the longest edge in a graph?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP












11












$begingroup$


I have a list of 2D points such as in the image.



coord = 0, 0, 10, 0, 20, 0, 30, 0, 25, 10, 0, 10, 0, 
5;


enter image description here



I would like to determine the longest "edge" length in a way that if 2 segments are in same line, they would be considered as part of 1 edge. For example, segments 1-2, 2-3, 3-4 are continuous and in the same line, so we consider it as 1 edge connecting Vertex 1 and Vertex 4. In this example, the longest edge length would be the distance from vertex 1 to vertex 4. How can I determine the longest edge length in Mathematica?










share|improve this question









$endgroup$
















    11












    $begingroup$


    I have a list of 2D points such as in the image.



    coord = 0, 0, 10, 0, 20, 0, 30, 0, 25, 10, 0, 10, 0, 
    5;


    enter image description here



    I would like to determine the longest "edge" length in a way that if 2 segments are in same line, they would be considered as part of 1 edge. For example, segments 1-2, 2-3, 3-4 are continuous and in the same line, so we consider it as 1 edge connecting Vertex 1 and Vertex 4. In this example, the longest edge length would be the distance from vertex 1 to vertex 4. How can I determine the longest edge length in Mathematica?










    share|improve this question









    $endgroup$














      11












      11








      11


      2



      $begingroup$


      I have a list of 2D points such as in the image.



      coord = 0, 0, 10, 0, 20, 0, 30, 0, 25, 10, 0, 10, 0, 
      5;


      enter image description here



      I would like to determine the longest "edge" length in a way that if 2 segments are in same line, they would be considered as part of 1 edge. For example, segments 1-2, 2-3, 3-4 are continuous and in the same line, so we consider it as 1 edge connecting Vertex 1 and Vertex 4. In this example, the longest edge length would be the distance from vertex 1 to vertex 4. How can I determine the longest edge length in Mathematica?










      share|improve this question









      $endgroup$




      I have a list of 2D points such as in the image.



      coord = 0, 0, 10, 0, 20, 0, 30, 0, 25, 10, 0, 10, 0, 
      5;


      enter image description here



      I would like to determine the longest "edge" length in a way that if 2 segments are in same line, they would be considered as part of 1 edge. For example, segments 1-2, 2-3, 3-4 are continuous and in the same line, so we consider it as 1 edge connecting Vertex 1 and Vertex 4. In this example, the longest edge length would be the distance from vertex 1 to vertex 4. How can I determine the longest edge length in Mathematica?







      list-manipulation graphics






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Jan 3 at 10:53









      N.T.CN.T.C

      44128




      44128




















          1 Answer
          1






          active

          oldest

          votes


















          14












          $begingroup$

          Update: The function in the original answer does not work for arbitrary polygons. The following seems to work



          ClearAll[nonCollinearHull]
          nonCollinearHull = Module[coords = #,
          angles = ArcTan @@@ (Subtract @@@ Partition[#, 2, 1 , 1, 1]),
          rotation, lengths,
          rotation = LengthWhile[Reverse[angles], # == angles[[1]] &];
          lengths = Length /@ Split[RotateRight[angles, rotation]];
          TakeList[RotateRight[coords, rotation], lengths][[All, 1]]] &;


          Examples:



          coord = 0, 0, 10, 0, 20, 0, 30, 0, 25, 10, 0, 10, 0, 5;
          lines = Line /@ Partition[nonCollinearHull[coord], 2, 1];
          longest = Last@SortBy[lines, N@ArcLength[#] &];
          Graphics[EdgeForm[Gray], FaceForm, Polygon@coord, Blue,
          PointSize[Large], Point@coord, Opacity[.5, Green],
          AbsolutePointSize[15], Point[nonCollinearHull[coord]],
          Thickness[.03], CapForm["Round"], Opacity[.5], Red, longest]


          enter image description here



          Using



          SeedRandom[123]
          coord2 = DeleteDuplicates[#[[FindShortestTour[#][[2]]]] & @
          DeleteDuplicates@RandomInteger[10, 50, 2];


          we get



          enter image description here



          And with



          SeedRandom[123]
          coord3 = DeleteDuplicates[#[[FindShortestTour[#][[2]]]] &@
          DeleteDuplicates@RandomInteger[20, 200, 2]];


          enter image description here



          Alternatively, you can use MaximalBy to define longest:



          SeedRandom[777777]
          coord = MapIndexed[#2[[1]], # &, Accumulate[RandomInteger[-2, 2, 50]]];
          lines = Line /@ Partition[nonCollinearHull[coord], 2, 1];
          longest = MaximalBy[lines, N@ArcLength[#] &];
          Graphics[EdgeForm[Gray], FaceForm, Line@coord, Blue,
          PointSize[Large], Point@coord, Opacity[.5, Green],
          AbsolutePointSize[15], Point[nonCollinearHull[coord]],
          Thickness[.03], CapForm["Round"], Opacity[.5], Red, longest]


          enter image description here



          Original answer:



          Using the function noncollinearF from this answer:



          ClearAll[noncollinearF]
          noncollinearF[verts_] := Function[k, Nor @@ (RegionMember[ConvexHullMesh[#], k] & /@
          Subsets[Complement[verts, k], 2])]

          lines = Line /@ Partition[Pick[#, noncollinearF[#] /@ #], 2, 1, 1, 1]& @ coord;
          longest = Last@SortBy[lines, N@ArcLength[#] &];
          Graphics[EdgeForm[Gray], FaceForm, Polygon@coord,
          Blue, PointSize[Large], Point@coord,
          Thickness[.03], CapForm["Round"], Opacity[.5], Red, longest]


          enter image description here






          share|improve this answer











          $endgroup$












          • $begingroup$
            Why ConvexHullMesh and not just Line?
            $endgroup$
            – swish
            Jan 4 at 7:18










          • $begingroup$
            It breaks if a coordinate list starts in the middle of the longest edge. Try RotateLeft[coord, 2] for the original example.
            $endgroup$
            – swish
            Jan 4 at 7:45










          • $begingroup$
            @swish, thank you. Updated with an alternative that does not have the issue.
            $endgroup$
            – kglr
            Jan 4 at 19:47










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "387"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f188760%2fhow-to-determine-the-longest-edge-in-a-graph%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          14












          $begingroup$

          Update: The function in the original answer does not work for arbitrary polygons. The following seems to work



          ClearAll[nonCollinearHull]
          nonCollinearHull = Module[coords = #,
          angles = ArcTan @@@ (Subtract @@@ Partition[#, 2, 1 , 1, 1]),
          rotation, lengths,
          rotation = LengthWhile[Reverse[angles], # == angles[[1]] &];
          lengths = Length /@ Split[RotateRight[angles, rotation]];
          TakeList[RotateRight[coords, rotation], lengths][[All, 1]]] &;


          Examples:



          coord = 0, 0, 10, 0, 20, 0, 30, 0, 25, 10, 0, 10, 0, 5;
          lines = Line /@ Partition[nonCollinearHull[coord], 2, 1];
          longest = Last@SortBy[lines, N@ArcLength[#] &];
          Graphics[EdgeForm[Gray], FaceForm, Polygon@coord, Blue,
          PointSize[Large], Point@coord, Opacity[.5, Green],
          AbsolutePointSize[15], Point[nonCollinearHull[coord]],
          Thickness[.03], CapForm["Round"], Opacity[.5], Red, longest]


          enter image description here



          Using



          SeedRandom[123]
          coord2 = DeleteDuplicates[#[[FindShortestTour[#][[2]]]] & @
          DeleteDuplicates@RandomInteger[10, 50, 2];


          we get



          enter image description here



          And with



          SeedRandom[123]
          coord3 = DeleteDuplicates[#[[FindShortestTour[#][[2]]]] &@
          DeleteDuplicates@RandomInteger[20, 200, 2]];


          enter image description here



          Alternatively, you can use MaximalBy to define longest:



          SeedRandom[777777]
          coord = MapIndexed[#2[[1]], # &, Accumulate[RandomInteger[-2, 2, 50]]];
          lines = Line /@ Partition[nonCollinearHull[coord], 2, 1];
          longest = MaximalBy[lines, N@ArcLength[#] &];
          Graphics[EdgeForm[Gray], FaceForm, Line@coord, Blue,
          PointSize[Large], Point@coord, Opacity[.5, Green],
          AbsolutePointSize[15], Point[nonCollinearHull[coord]],
          Thickness[.03], CapForm["Round"], Opacity[.5], Red, longest]


          enter image description here



          Original answer:



          Using the function noncollinearF from this answer:



          ClearAll[noncollinearF]
          noncollinearF[verts_] := Function[k, Nor @@ (RegionMember[ConvexHullMesh[#], k] & /@
          Subsets[Complement[verts, k], 2])]

          lines = Line /@ Partition[Pick[#, noncollinearF[#] /@ #], 2, 1, 1, 1]& @ coord;
          longest = Last@SortBy[lines, N@ArcLength[#] &];
          Graphics[EdgeForm[Gray], FaceForm, Polygon@coord,
          Blue, PointSize[Large], Point@coord,
          Thickness[.03], CapForm["Round"], Opacity[.5], Red, longest]


          enter image description here






          share|improve this answer











          $endgroup$












          • $begingroup$
            Why ConvexHullMesh and not just Line?
            $endgroup$
            – swish
            Jan 4 at 7:18










          • $begingroup$
            It breaks if a coordinate list starts in the middle of the longest edge. Try RotateLeft[coord, 2] for the original example.
            $endgroup$
            – swish
            Jan 4 at 7:45










          • $begingroup$
            @swish, thank you. Updated with an alternative that does not have the issue.
            $endgroup$
            – kglr
            Jan 4 at 19:47















          14












          $begingroup$

          Update: The function in the original answer does not work for arbitrary polygons. The following seems to work



          ClearAll[nonCollinearHull]
          nonCollinearHull = Module[coords = #,
          angles = ArcTan @@@ (Subtract @@@ Partition[#, 2, 1 , 1, 1]),
          rotation, lengths,
          rotation = LengthWhile[Reverse[angles], # == angles[[1]] &];
          lengths = Length /@ Split[RotateRight[angles, rotation]];
          TakeList[RotateRight[coords, rotation], lengths][[All, 1]]] &;


          Examples:



          coord = 0, 0, 10, 0, 20, 0, 30, 0, 25, 10, 0, 10, 0, 5;
          lines = Line /@ Partition[nonCollinearHull[coord], 2, 1];
          longest = Last@SortBy[lines, N@ArcLength[#] &];
          Graphics[EdgeForm[Gray], FaceForm, Polygon@coord, Blue,
          PointSize[Large], Point@coord, Opacity[.5, Green],
          AbsolutePointSize[15], Point[nonCollinearHull[coord]],
          Thickness[.03], CapForm["Round"], Opacity[.5], Red, longest]


          enter image description here



          Using



          SeedRandom[123]
          coord2 = DeleteDuplicates[#[[FindShortestTour[#][[2]]]] & @
          DeleteDuplicates@RandomInteger[10, 50, 2];


          we get



          enter image description here



          And with



          SeedRandom[123]
          coord3 = DeleteDuplicates[#[[FindShortestTour[#][[2]]]] &@
          DeleteDuplicates@RandomInteger[20, 200, 2]];


          enter image description here



          Alternatively, you can use MaximalBy to define longest:



          SeedRandom[777777]
          coord = MapIndexed[#2[[1]], # &, Accumulate[RandomInteger[-2, 2, 50]]];
          lines = Line /@ Partition[nonCollinearHull[coord], 2, 1];
          longest = MaximalBy[lines, N@ArcLength[#] &];
          Graphics[EdgeForm[Gray], FaceForm, Line@coord, Blue,
          PointSize[Large], Point@coord, Opacity[.5, Green],
          AbsolutePointSize[15], Point[nonCollinearHull[coord]],
          Thickness[.03], CapForm["Round"], Opacity[.5], Red, longest]


          enter image description here



          Original answer:



          Using the function noncollinearF from this answer:



          ClearAll[noncollinearF]
          noncollinearF[verts_] := Function[k, Nor @@ (RegionMember[ConvexHullMesh[#], k] & /@
          Subsets[Complement[verts, k], 2])]

          lines = Line /@ Partition[Pick[#, noncollinearF[#] /@ #], 2, 1, 1, 1]& @ coord;
          longest = Last@SortBy[lines, N@ArcLength[#] &];
          Graphics[EdgeForm[Gray], FaceForm, Polygon@coord,
          Blue, PointSize[Large], Point@coord,
          Thickness[.03], CapForm["Round"], Opacity[.5], Red, longest]


          enter image description here






          share|improve this answer











          $endgroup$












          • $begingroup$
            Why ConvexHullMesh and not just Line?
            $endgroup$
            – swish
            Jan 4 at 7:18










          • $begingroup$
            It breaks if a coordinate list starts in the middle of the longest edge. Try RotateLeft[coord, 2] for the original example.
            $endgroup$
            – swish
            Jan 4 at 7:45










          • $begingroup$
            @swish, thank you. Updated with an alternative that does not have the issue.
            $endgroup$
            – kglr
            Jan 4 at 19:47













          14












          14








          14





          $begingroup$

          Update: The function in the original answer does not work for arbitrary polygons. The following seems to work



          ClearAll[nonCollinearHull]
          nonCollinearHull = Module[coords = #,
          angles = ArcTan @@@ (Subtract @@@ Partition[#, 2, 1 , 1, 1]),
          rotation, lengths,
          rotation = LengthWhile[Reverse[angles], # == angles[[1]] &];
          lengths = Length /@ Split[RotateRight[angles, rotation]];
          TakeList[RotateRight[coords, rotation], lengths][[All, 1]]] &;


          Examples:



          coord = 0, 0, 10, 0, 20, 0, 30, 0, 25, 10, 0, 10, 0, 5;
          lines = Line /@ Partition[nonCollinearHull[coord], 2, 1];
          longest = Last@SortBy[lines, N@ArcLength[#] &];
          Graphics[EdgeForm[Gray], FaceForm, Polygon@coord, Blue,
          PointSize[Large], Point@coord, Opacity[.5, Green],
          AbsolutePointSize[15], Point[nonCollinearHull[coord]],
          Thickness[.03], CapForm["Round"], Opacity[.5], Red, longest]


          enter image description here



          Using



          SeedRandom[123]
          coord2 = DeleteDuplicates[#[[FindShortestTour[#][[2]]]] & @
          DeleteDuplicates@RandomInteger[10, 50, 2];


          we get



          enter image description here



          And with



          SeedRandom[123]
          coord3 = DeleteDuplicates[#[[FindShortestTour[#][[2]]]] &@
          DeleteDuplicates@RandomInteger[20, 200, 2]];


          enter image description here



          Alternatively, you can use MaximalBy to define longest:



          SeedRandom[777777]
          coord = MapIndexed[#2[[1]], # &, Accumulate[RandomInteger[-2, 2, 50]]];
          lines = Line /@ Partition[nonCollinearHull[coord], 2, 1];
          longest = MaximalBy[lines, N@ArcLength[#] &];
          Graphics[EdgeForm[Gray], FaceForm, Line@coord, Blue,
          PointSize[Large], Point@coord, Opacity[.5, Green],
          AbsolutePointSize[15], Point[nonCollinearHull[coord]],
          Thickness[.03], CapForm["Round"], Opacity[.5], Red, longest]


          enter image description here



          Original answer:



          Using the function noncollinearF from this answer:



          ClearAll[noncollinearF]
          noncollinearF[verts_] := Function[k, Nor @@ (RegionMember[ConvexHullMesh[#], k] & /@
          Subsets[Complement[verts, k], 2])]

          lines = Line /@ Partition[Pick[#, noncollinearF[#] /@ #], 2, 1, 1, 1]& @ coord;
          longest = Last@SortBy[lines, N@ArcLength[#] &];
          Graphics[EdgeForm[Gray], FaceForm, Polygon@coord,
          Blue, PointSize[Large], Point@coord,
          Thickness[.03], CapForm["Round"], Opacity[.5], Red, longest]


          enter image description here






          share|improve this answer











          $endgroup$



          Update: The function in the original answer does not work for arbitrary polygons. The following seems to work



          ClearAll[nonCollinearHull]
          nonCollinearHull = Module[coords = #,
          angles = ArcTan @@@ (Subtract @@@ Partition[#, 2, 1 , 1, 1]),
          rotation, lengths,
          rotation = LengthWhile[Reverse[angles], # == angles[[1]] &];
          lengths = Length /@ Split[RotateRight[angles, rotation]];
          TakeList[RotateRight[coords, rotation], lengths][[All, 1]]] &;


          Examples:



          coord = 0, 0, 10, 0, 20, 0, 30, 0, 25, 10, 0, 10, 0, 5;
          lines = Line /@ Partition[nonCollinearHull[coord], 2, 1];
          longest = Last@SortBy[lines, N@ArcLength[#] &];
          Graphics[EdgeForm[Gray], FaceForm, Polygon@coord, Blue,
          PointSize[Large], Point@coord, Opacity[.5, Green],
          AbsolutePointSize[15], Point[nonCollinearHull[coord]],
          Thickness[.03], CapForm["Round"], Opacity[.5], Red, longest]


          enter image description here



          Using



          SeedRandom[123]
          coord2 = DeleteDuplicates[#[[FindShortestTour[#][[2]]]] & @
          DeleteDuplicates@RandomInteger[10, 50, 2];


          we get



          enter image description here



          And with



          SeedRandom[123]
          coord3 = DeleteDuplicates[#[[FindShortestTour[#][[2]]]] &@
          DeleteDuplicates@RandomInteger[20, 200, 2]];


          enter image description here



          Alternatively, you can use MaximalBy to define longest:



          SeedRandom[777777]
          coord = MapIndexed[#2[[1]], # &, Accumulate[RandomInteger[-2, 2, 50]]];
          lines = Line /@ Partition[nonCollinearHull[coord], 2, 1];
          longest = MaximalBy[lines, N@ArcLength[#] &];
          Graphics[EdgeForm[Gray], FaceForm, Line@coord, Blue,
          PointSize[Large], Point@coord, Opacity[.5, Green],
          AbsolutePointSize[15], Point[nonCollinearHull[coord]],
          Thickness[.03], CapForm["Round"], Opacity[.5], Red, longest]


          enter image description here



          Original answer:



          Using the function noncollinearF from this answer:



          ClearAll[noncollinearF]
          noncollinearF[verts_] := Function[k, Nor @@ (RegionMember[ConvexHullMesh[#], k] & /@
          Subsets[Complement[verts, k], 2])]

          lines = Line /@ Partition[Pick[#, noncollinearF[#] /@ #], 2, 1, 1, 1]& @ coord;
          longest = Last@SortBy[lines, N@ArcLength[#] &];
          Graphics[EdgeForm[Gray], FaceForm, Polygon@coord,
          Blue, PointSize[Large], Point@coord,
          Thickness[.03], CapForm["Round"], Opacity[.5], Red, longest]


          enter image description here







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Jan 5 at 11:04

























          answered Jan 3 at 11:54









          kglrkglr

          179k9198410




          179k9198410











          • $begingroup$
            Why ConvexHullMesh and not just Line?
            $endgroup$
            – swish
            Jan 4 at 7:18










          • $begingroup$
            It breaks if a coordinate list starts in the middle of the longest edge. Try RotateLeft[coord, 2] for the original example.
            $endgroup$
            – swish
            Jan 4 at 7:45










          • $begingroup$
            @swish, thank you. Updated with an alternative that does not have the issue.
            $endgroup$
            – kglr
            Jan 4 at 19:47
















          • $begingroup$
            Why ConvexHullMesh and not just Line?
            $endgroup$
            – swish
            Jan 4 at 7:18










          • $begingroup$
            It breaks if a coordinate list starts in the middle of the longest edge. Try RotateLeft[coord, 2] for the original example.
            $endgroup$
            – swish
            Jan 4 at 7:45










          • $begingroup$
            @swish, thank you. Updated with an alternative that does not have the issue.
            $endgroup$
            – kglr
            Jan 4 at 19:47















          $begingroup$
          Why ConvexHullMesh and not just Line?
          $endgroup$
          – swish
          Jan 4 at 7:18




          $begingroup$
          Why ConvexHullMesh and not just Line?
          $endgroup$
          – swish
          Jan 4 at 7:18












          $begingroup$
          It breaks if a coordinate list starts in the middle of the longest edge. Try RotateLeft[coord, 2] for the original example.
          $endgroup$
          – swish
          Jan 4 at 7:45




          $begingroup$
          It breaks if a coordinate list starts in the middle of the longest edge. Try RotateLeft[coord, 2] for the original example.
          $endgroup$
          – swish
          Jan 4 at 7:45












          $begingroup$
          @swish, thank you. Updated with an alternative that does not have the issue.
          $endgroup$
          – kglr
          Jan 4 at 19:47




          $begingroup$
          @swish, thank you. Updated with an alternative that does not have the issue.
          $endgroup$
          – kglr
          Jan 4 at 19:47

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematica Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f188760%2fhow-to-determine-the-longest-edge-in-a-graph%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown






          Popular posts from this blog

          How to check contact read email or not when send email to Individual?

          Displaying single band from multi-band raster using QGIS

          How many registers does an x86_64 CPU actually have?