$sqrt24ab+25+sqrt24bc+25+sqrt24ca+25geq 21$ if $a+b+c=ab+bc+ca$?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP












4












$begingroup$


For $a,b,c>0 $ and $a+b+c=ab+bc+ca$ . Prove or disprove that : $sqrt24ab+25+sqrt24bc+25+sqrt24ca+25geq 21$



I checked in very many cases. Example :$c=1,
a=2,b=frac12...$
then it’s true, but cannot prove that



My attempts:



I consider function $ f(x)=sqrt24x^2+25$



And $f’(x)=frac24xsqrt24x^2+25$,



$f’’(x)=frac600(24x^2+25)(sqrt24x^2+25>0$.



So $f(x)+f(y)+f(z)geq 3f(fracx+y+z3)$.



But cannot prove that $sqrtab+sqrtbc
+sqrtcageq 3$










share|cite|improve this question











$endgroup$











  • $begingroup$
    Consider $a=2,b=2, cto 0^+ implies sqrtab + sqrtbc+sqrtca to 2$...
    $endgroup$
    – Macavity
    Feb 3 at 8:59











  • $begingroup$
    @Macavity, if $a=2,b=2$, then $c=0not >0$ from the given constraint. Better if $a=b=1.99$ and $capprox 0.007$, then $sqrtab+sqrtbc+sqrtcaapprox 2.22<3$.
    $endgroup$
    – farruhota
    Feb 3 at 9:16















4












$begingroup$


For $a,b,c>0 $ and $a+b+c=ab+bc+ca$ . Prove or disprove that : $sqrt24ab+25+sqrt24bc+25+sqrt24ca+25geq 21$



I checked in very many cases. Example :$c=1,
a=2,b=frac12...$
then it’s true, but cannot prove that



My attempts:



I consider function $ f(x)=sqrt24x^2+25$



And $f’(x)=frac24xsqrt24x^2+25$,



$f’’(x)=frac600(24x^2+25)(sqrt24x^2+25>0$.



So $f(x)+f(y)+f(z)geq 3f(fracx+y+z3)$.



But cannot prove that $sqrtab+sqrtbc
+sqrtcageq 3$










share|cite|improve this question











$endgroup$











  • $begingroup$
    Consider $a=2,b=2, cto 0^+ implies sqrtab + sqrtbc+sqrtca to 2$...
    $endgroup$
    – Macavity
    Feb 3 at 8:59











  • $begingroup$
    @Macavity, if $a=2,b=2$, then $c=0not >0$ from the given constraint. Better if $a=b=1.99$ and $capprox 0.007$, then $sqrtab+sqrtbc+sqrtcaapprox 2.22<3$.
    $endgroup$
    – farruhota
    Feb 3 at 9:16













4












4








4


1



$begingroup$


For $a,b,c>0 $ and $a+b+c=ab+bc+ca$ . Prove or disprove that : $sqrt24ab+25+sqrt24bc+25+sqrt24ca+25geq 21$



I checked in very many cases. Example :$c=1,
a=2,b=frac12...$
then it’s true, but cannot prove that



My attempts:



I consider function $ f(x)=sqrt24x^2+25$



And $f’(x)=frac24xsqrt24x^2+25$,



$f’’(x)=frac600(24x^2+25)(sqrt24x^2+25>0$.



So $f(x)+f(y)+f(z)geq 3f(fracx+y+z3)$.



But cannot prove that $sqrtab+sqrtbc
+sqrtcageq 3$










share|cite|improve this question











$endgroup$




For $a,b,c>0 $ and $a+b+c=ab+bc+ca$ . Prove or disprove that : $sqrt24ab+25+sqrt24bc+25+sqrt24ca+25geq 21$



I checked in very many cases. Example :$c=1,
a=2,b=frac12...$
then it’s true, but cannot prove that



My attempts:



I consider function $ f(x)=sqrt24x^2+25$



And $f’(x)=frac24xsqrt24x^2+25$,



$f’’(x)=frac600(24x^2+25)(sqrt24x^2+25>0$.



So $f(x)+f(y)+f(z)geq 3f(fracx+y+z3)$.



But cannot prove that $sqrtab+sqrtbc
+sqrtcageq 3$







inequality contest-math radicals substitution uvw






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 3 at 14:04









user21820

39k543153




39k543153










asked Feb 3 at 7:19









Hai SmitHai Smit

677




677











  • $begingroup$
    Consider $a=2,b=2, cto 0^+ implies sqrtab + sqrtbc+sqrtca to 2$...
    $endgroup$
    – Macavity
    Feb 3 at 8:59











  • $begingroup$
    @Macavity, if $a=2,b=2$, then $c=0not >0$ from the given constraint. Better if $a=b=1.99$ and $capprox 0.007$, then $sqrtab+sqrtbc+sqrtcaapprox 2.22<3$.
    $endgroup$
    – farruhota
    Feb 3 at 9:16
















  • $begingroup$
    Consider $a=2,b=2, cto 0^+ implies sqrtab + sqrtbc+sqrtca to 2$...
    $endgroup$
    – Macavity
    Feb 3 at 8:59











  • $begingroup$
    @Macavity, if $a=2,b=2$, then $c=0not >0$ from the given constraint. Better if $a=b=1.99$ and $capprox 0.007$, then $sqrtab+sqrtbc+sqrtcaapprox 2.22<3$.
    $endgroup$
    – farruhota
    Feb 3 at 9:16















$begingroup$
Consider $a=2,b=2, cto 0^+ implies sqrtab + sqrtbc+sqrtca to 2$...
$endgroup$
– Macavity
Feb 3 at 8:59





$begingroup$
Consider $a=2,b=2, cto 0^+ implies sqrtab + sqrtbc+sqrtca to 2$...
$endgroup$
– Macavity
Feb 3 at 8:59













$begingroup$
@Macavity, if $a=2,b=2$, then $c=0not >0$ from the given constraint. Better if $a=b=1.99$ and $capprox 0.007$, then $sqrtab+sqrtbc+sqrtcaapprox 2.22<3$.
$endgroup$
– farruhota
Feb 3 at 9:16




$begingroup$
@Macavity, if $a=2,b=2$, then $c=0not >0$ from the given constraint. Better if $a=b=1.99$ and $capprox 0.007$, then $sqrtab+sqrtbc+sqrtcaapprox 2.22<3$.
$endgroup$
– farruhota
Feb 3 at 9:16










3 Answers
3






active

oldest

votes


















4












$begingroup$

Let $$sumlimits_cycsqrt24ab+25<21,$$ $a=kx$, $b=ky$ and $c=kz$ such that $k>0$ and $$sum_cycsqrt24xy+25=21.$$
Thus,
$$sum_cycsqrt24k^2xy+25<21=sum_cycsqrt24xy+25$$ or
$$sum_cycfrac(k^2-1)xysqrt24k^2xy+25+sqrt24xy+25<0$$ or
$$(k^2-1)sum_cycfracxysqrt24k^2xy+25+sqrt24xy+25<0,$$ which gives $$0<k<1.$$
But the condition gives $$x+y+z=k(xy+xz+yz)<xy+xz+yz,$$
which is a contradiction because we'll prove now that $$x+y+zgeq xy+xz+yz.$$
Indeed, let $yz=fracp^2+5p6,$ $xz=fracq^2+5q6$ and $xy=fracr^2+5r6,$ where $p$, $q$ and $r$ are positives.



Thus, $$sum_cycsqrt4(p^2+5p)+25=21$$ or
$$p+q+r=3$$ and since $$x=sqrtfracfracq^2+5q6cdotfracr^2+5r6fracp^2+5p6=sqrtfrac(q^2+5q)(r^2+5r)6(p^2+5p),$$ we need to prove that
$$sum_cycsqrtfrac(q^2+5q)(r^2+5r)6(p^2+5p)geqsum_cycfracp^2+5p6$$ or
$$sqrt6sum_cyc(p^2+5p)(q^2+5q)geqsum_cyc(p^2+5p)sqrtpqrprod_cyc(p+5).$$
Now, let $p+q+r=3u$, $pq+pr+qr=3v^2$ and $pqr=w^3$.



Thus, we need to prove that
$$sqrt6sum_cyc(p^2q^2+5p^2q+5p^2r+25pq)geq$$
$$geqsum_cyc(p^2+5)sqrtw^3(pqr+5(pq+pr+qr)+25(p+q+r)+125)$$ or
$$sqrt6(9v^4-6uw^3+5(9uv^2-3w^3)u+75u^2v^2)geq$$
$$geq(9u^2-6v^2+15u^2)sqrtw^3(w^3+15uv^2+75u^3+125u^3)$$ or $f(w^3)geq0,$ where
$$f(w^3)=sqrt3(40u^2v^2+3v^4-7uw^3)u-sqrt2(4u^2-v^2)sqrtw^3(200u^3+15uv^2+w^3).$$
We see that $f$ decreases, which says that it's enough to prove the last inequality for the maximal value of $w^3$, which happens for equality case of two variables.



Now, let $q=p$ and $r=3-2p$, where $0<p<frac32$ and after squaring of the both sides we need to prove that
$$p^3(p-1)^2(p+5)^2(224-165p+60p^2-8p^3)geq0,$$ which is true because
$$224-165p+60p^2-8p^3=224-165p+48p^2+4p^2(3-2p)geq224-165p+48p^2>0.$$
Done!






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    too great . You are very well . Happy a day
    $endgroup$
    – Hai Smit
    Feb 3 at 10:25


















0












$begingroup$

I consider function $ f(x)=sqrt24x^2+25$
And $f’(x)=frac24xsqrt24x^2+25$,
$f’’(x)=frac600(24x^2+25)sqrt24x^2+25>0$
So $f(x)+f(y)+f(z)geq 3f(fracx+y+z3)$



(inequalyti Jensen’s)
But can not prove that $sqrtab+sqrtbc
+sqrtcageq 3$






share|cite|improve this answer











$endgroup$




















    0












    $begingroup$

    What are the allowed values of $a,b,c$? If they are integers greater than zero then how about this:



    Firstly $a = b = c = 1$ meets your constraint, and with these values $3sqrt24 +25 = 21$



    By my assumption that they are positive integers any valid $a,b$ would satisfy $sqrt24ab + 25 ge sqrt24 + 25 = 7$



    And since the problem is symmetric in $a,b,c$, we can say that



    $sqrt24ab+25 + sqrt24bc + 25 + sqrt24ca + 25 ge sqrt24+25 + sqrt24+25 + sqrt24+25 = 21$






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      $ a,b,c>0 $ and can not integers
      $endgroup$
      – Hai Smit
      Feb 3 at 8:57










    • $begingroup$
      Ok. By 'can not' I guess you mean that non-integer values are allowed.
      $endgroup$
      – mrblewog
      Feb 3 at 9:00






    • 1




      $begingroup$
      Example $a=2,c=1, b=frac12$ then $LHS=21,626>21$
      $endgroup$
      – Hai Smit
      Feb 3 at 9:04











    • $begingroup$
      Yup, your example is fine.
      $endgroup$
      – mrblewog
      Feb 3 at 9:05











    • $begingroup$
      So has @farruhota provided you with a counterexample when some of $a,b,c$ are non-integer?
      $endgroup$
      – mrblewog
      Feb 3 at 9:18











    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098290%2fsqrt24ab25-sqrt24bc25-sqrt24ca25-geq-21-if-abc-abbcca%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Let $$sumlimits_cycsqrt24ab+25<21,$$ $a=kx$, $b=ky$ and $c=kz$ such that $k>0$ and $$sum_cycsqrt24xy+25=21.$$
    Thus,
    $$sum_cycsqrt24k^2xy+25<21=sum_cycsqrt24xy+25$$ or
    $$sum_cycfrac(k^2-1)xysqrt24k^2xy+25+sqrt24xy+25<0$$ or
    $$(k^2-1)sum_cycfracxysqrt24k^2xy+25+sqrt24xy+25<0,$$ which gives $$0<k<1.$$
    But the condition gives $$x+y+z=k(xy+xz+yz)<xy+xz+yz,$$
    which is a contradiction because we'll prove now that $$x+y+zgeq xy+xz+yz.$$
    Indeed, let $yz=fracp^2+5p6,$ $xz=fracq^2+5q6$ and $xy=fracr^2+5r6,$ where $p$, $q$ and $r$ are positives.



    Thus, $$sum_cycsqrt4(p^2+5p)+25=21$$ or
    $$p+q+r=3$$ and since $$x=sqrtfracfracq^2+5q6cdotfracr^2+5r6fracp^2+5p6=sqrtfrac(q^2+5q)(r^2+5r)6(p^2+5p),$$ we need to prove that
    $$sum_cycsqrtfrac(q^2+5q)(r^2+5r)6(p^2+5p)geqsum_cycfracp^2+5p6$$ or
    $$sqrt6sum_cyc(p^2+5p)(q^2+5q)geqsum_cyc(p^2+5p)sqrtpqrprod_cyc(p+5).$$
    Now, let $p+q+r=3u$, $pq+pr+qr=3v^2$ and $pqr=w^3$.



    Thus, we need to prove that
    $$sqrt6sum_cyc(p^2q^2+5p^2q+5p^2r+25pq)geq$$
    $$geqsum_cyc(p^2+5)sqrtw^3(pqr+5(pq+pr+qr)+25(p+q+r)+125)$$ or
    $$sqrt6(9v^4-6uw^3+5(9uv^2-3w^3)u+75u^2v^2)geq$$
    $$geq(9u^2-6v^2+15u^2)sqrtw^3(w^3+15uv^2+75u^3+125u^3)$$ or $f(w^3)geq0,$ where
    $$f(w^3)=sqrt3(40u^2v^2+3v^4-7uw^3)u-sqrt2(4u^2-v^2)sqrtw^3(200u^3+15uv^2+w^3).$$
    We see that $f$ decreases, which says that it's enough to prove the last inequality for the maximal value of $w^3$, which happens for equality case of two variables.



    Now, let $q=p$ and $r=3-2p$, where $0<p<frac32$ and after squaring of the both sides we need to prove that
    $$p^3(p-1)^2(p+5)^2(224-165p+60p^2-8p^3)geq0,$$ which is true because
    $$224-165p+60p^2-8p^3=224-165p+48p^2+4p^2(3-2p)geq224-165p+48p^2>0.$$
    Done!






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      too great . You are very well . Happy a day
      $endgroup$
      – Hai Smit
      Feb 3 at 10:25















    4












    $begingroup$

    Let $$sumlimits_cycsqrt24ab+25<21,$$ $a=kx$, $b=ky$ and $c=kz$ such that $k>0$ and $$sum_cycsqrt24xy+25=21.$$
    Thus,
    $$sum_cycsqrt24k^2xy+25<21=sum_cycsqrt24xy+25$$ or
    $$sum_cycfrac(k^2-1)xysqrt24k^2xy+25+sqrt24xy+25<0$$ or
    $$(k^2-1)sum_cycfracxysqrt24k^2xy+25+sqrt24xy+25<0,$$ which gives $$0<k<1.$$
    But the condition gives $$x+y+z=k(xy+xz+yz)<xy+xz+yz,$$
    which is a contradiction because we'll prove now that $$x+y+zgeq xy+xz+yz.$$
    Indeed, let $yz=fracp^2+5p6,$ $xz=fracq^2+5q6$ and $xy=fracr^2+5r6,$ where $p$, $q$ and $r$ are positives.



    Thus, $$sum_cycsqrt4(p^2+5p)+25=21$$ or
    $$p+q+r=3$$ and since $$x=sqrtfracfracq^2+5q6cdotfracr^2+5r6fracp^2+5p6=sqrtfrac(q^2+5q)(r^2+5r)6(p^2+5p),$$ we need to prove that
    $$sum_cycsqrtfrac(q^2+5q)(r^2+5r)6(p^2+5p)geqsum_cycfracp^2+5p6$$ or
    $$sqrt6sum_cyc(p^2+5p)(q^2+5q)geqsum_cyc(p^2+5p)sqrtpqrprod_cyc(p+5).$$
    Now, let $p+q+r=3u$, $pq+pr+qr=3v^2$ and $pqr=w^3$.



    Thus, we need to prove that
    $$sqrt6sum_cyc(p^2q^2+5p^2q+5p^2r+25pq)geq$$
    $$geqsum_cyc(p^2+5)sqrtw^3(pqr+5(pq+pr+qr)+25(p+q+r)+125)$$ or
    $$sqrt6(9v^4-6uw^3+5(9uv^2-3w^3)u+75u^2v^2)geq$$
    $$geq(9u^2-6v^2+15u^2)sqrtw^3(w^3+15uv^2+75u^3+125u^3)$$ or $f(w^3)geq0,$ where
    $$f(w^3)=sqrt3(40u^2v^2+3v^4-7uw^3)u-sqrt2(4u^2-v^2)sqrtw^3(200u^3+15uv^2+w^3).$$
    We see that $f$ decreases, which says that it's enough to prove the last inequality for the maximal value of $w^3$, which happens for equality case of two variables.



    Now, let $q=p$ and $r=3-2p$, where $0<p<frac32$ and after squaring of the both sides we need to prove that
    $$p^3(p-1)^2(p+5)^2(224-165p+60p^2-8p^3)geq0,$$ which is true because
    $$224-165p+60p^2-8p^3=224-165p+48p^2+4p^2(3-2p)geq224-165p+48p^2>0.$$
    Done!






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      too great . You are very well . Happy a day
      $endgroup$
      – Hai Smit
      Feb 3 at 10:25













    4












    4








    4





    $begingroup$

    Let $$sumlimits_cycsqrt24ab+25<21,$$ $a=kx$, $b=ky$ and $c=kz$ such that $k>0$ and $$sum_cycsqrt24xy+25=21.$$
    Thus,
    $$sum_cycsqrt24k^2xy+25<21=sum_cycsqrt24xy+25$$ or
    $$sum_cycfrac(k^2-1)xysqrt24k^2xy+25+sqrt24xy+25<0$$ or
    $$(k^2-1)sum_cycfracxysqrt24k^2xy+25+sqrt24xy+25<0,$$ which gives $$0<k<1.$$
    But the condition gives $$x+y+z=k(xy+xz+yz)<xy+xz+yz,$$
    which is a contradiction because we'll prove now that $$x+y+zgeq xy+xz+yz.$$
    Indeed, let $yz=fracp^2+5p6,$ $xz=fracq^2+5q6$ and $xy=fracr^2+5r6,$ where $p$, $q$ and $r$ are positives.



    Thus, $$sum_cycsqrt4(p^2+5p)+25=21$$ or
    $$p+q+r=3$$ and since $$x=sqrtfracfracq^2+5q6cdotfracr^2+5r6fracp^2+5p6=sqrtfrac(q^2+5q)(r^2+5r)6(p^2+5p),$$ we need to prove that
    $$sum_cycsqrtfrac(q^2+5q)(r^2+5r)6(p^2+5p)geqsum_cycfracp^2+5p6$$ or
    $$sqrt6sum_cyc(p^2+5p)(q^2+5q)geqsum_cyc(p^2+5p)sqrtpqrprod_cyc(p+5).$$
    Now, let $p+q+r=3u$, $pq+pr+qr=3v^2$ and $pqr=w^3$.



    Thus, we need to prove that
    $$sqrt6sum_cyc(p^2q^2+5p^2q+5p^2r+25pq)geq$$
    $$geqsum_cyc(p^2+5)sqrtw^3(pqr+5(pq+pr+qr)+25(p+q+r)+125)$$ or
    $$sqrt6(9v^4-6uw^3+5(9uv^2-3w^3)u+75u^2v^2)geq$$
    $$geq(9u^2-6v^2+15u^2)sqrtw^3(w^3+15uv^2+75u^3+125u^3)$$ or $f(w^3)geq0,$ where
    $$f(w^3)=sqrt3(40u^2v^2+3v^4-7uw^3)u-sqrt2(4u^2-v^2)sqrtw^3(200u^3+15uv^2+w^3).$$
    We see that $f$ decreases, which says that it's enough to prove the last inequality for the maximal value of $w^3$, which happens for equality case of two variables.



    Now, let $q=p$ and $r=3-2p$, where $0<p<frac32$ and after squaring of the both sides we need to prove that
    $$p^3(p-1)^2(p+5)^2(224-165p+60p^2-8p^3)geq0,$$ which is true because
    $$224-165p+60p^2-8p^3=224-165p+48p^2+4p^2(3-2p)geq224-165p+48p^2>0.$$
    Done!






    share|cite|improve this answer











    $endgroup$



    Let $$sumlimits_cycsqrt24ab+25<21,$$ $a=kx$, $b=ky$ and $c=kz$ such that $k>0$ and $$sum_cycsqrt24xy+25=21.$$
    Thus,
    $$sum_cycsqrt24k^2xy+25<21=sum_cycsqrt24xy+25$$ or
    $$sum_cycfrac(k^2-1)xysqrt24k^2xy+25+sqrt24xy+25<0$$ or
    $$(k^2-1)sum_cycfracxysqrt24k^2xy+25+sqrt24xy+25<0,$$ which gives $$0<k<1.$$
    But the condition gives $$x+y+z=k(xy+xz+yz)<xy+xz+yz,$$
    which is a contradiction because we'll prove now that $$x+y+zgeq xy+xz+yz.$$
    Indeed, let $yz=fracp^2+5p6,$ $xz=fracq^2+5q6$ and $xy=fracr^2+5r6,$ where $p$, $q$ and $r$ are positives.



    Thus, $$sum_cycsqrt4(p^2+5p)+25=21$$ or
    $$p+q+r=3$$ and since $$x=sqrtfracfracq^2+5q6cdotfracr^2+5r6fracp^2+5p6=sqrtfrac(q^2+5q)(r^2+5r)6(p^2+5p),$$ we need to prove that
    $$sum_cycsqrtfrac(q^2+5q)(r^2+5r)6(p^2+5p)geqsum_cycfracp^2+5p6$$ or
    $$sqrt6sum_cyc(p^2+5p)(q^2+5q)geqsum_cyc(p^2+5p)sqrtpqrprod_cyc(p+5).$$
    Now, let $p+q+r=3u$, $pq+pr+qr=3v^2$ and $pqr=w^3$.



    Thus, we need to prove that
    $$sqrt6sum_cyc(p^2q^2+5p^2q+5p^2r+25pq)geq$$
    $$geqsum_cyc(p^2+5)sqrtw^3(pqr+5(pq+pr+qr)+25(p+q+r)+125)$$ or
    $$sqrt6(9v^4-6uw^3+5(9uv^2-3w^3)u+75u^2v^2)geq$$
    $$geq(9u^2-6v^2+15u^2)sqrtw^3(w^3+15uv^2+75u^3+125u^3)$$ or $f(w^3)geq0,$ where
    $$f(w^3)=sqrt3(40u^2v^2+3v^4-7uw^3)u-sqrt2(4u^2-v^2)sqrtw^3(200u^3+15uv^2+w^3).$$
    We see that $f$ decreases, which says that it's enough to prove the last inequality for the maximal value of $w^3$, which happens for equality case of two variables.



    Now, let $q=p$ and $r=3-2p$, where $0<p<frac32$ and after squaring of the both sides we need to prove that
    $$p^3(p-1)^2(p+5)^2(224-165p+60p^2-8p^3)geq0,$$ which is true because
    $$224-165p+60p^2-8p^3=224-165p+48p^2+4p^2(3-2p)geq224-165p+48p^2>0.$$
    Done!







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Feb 3 at 10:42

























    answered Feb 3 at 10:05









    Michael RozenbergMichael Rozenberg

    105k1892198




    105k1892198







    • 1




      $begingroup$
      too great . You are very well . Happy a day
      $endgroup$
      – Hai Smit
      Feb 3 at 10:25












    • 1




      $begingroup$
      too great . You are very well . Happy a day
      $endgroup$
      – Hai Smit
      Feb 3 at 10:25







    1




    1




    $begingroup$
    too great . You are very well . Happy a day
    $endgroup$
    – Hai Smit
    Feb 3 at 10:25




    $begingroup$
    too great . You are very well . Happy a day
    $endgroup$
    – Hai Smit
    Feb 3 at 10:25











    0












    $begingroup$

    I consider function $ f(x)=sqrt24x^2+25$
    And $f’(x)=frac24xsqrt24x^2+25$,
    $f’’(x)=frac600(24x^2+25)sqrt24x^2+25>0$
    So $f(x)+f(y)+f(z)geq 3f(fracx+y+z3)$



    (inequalyti Jensen’s)
    But can not prove that $sqrtab+sqrtbc
    +sqrtcageq 3$






    share|cite|improve this answer











    $endgroup$

















      0












      $begingroup$

      I consider function $ f(x)=sqrt24x^2+25$
      And $f’(x)=frac24xsqrt24x^2+25$,
      $f’’(x)=frac600(24x^2+25)sqrt24x^2+25>0$
      So $f(x)+f(y)+f(z)geq 3f(fracx+y+z3)$



      (inequalyti Jensen’s)
      But can not prove that $sqrtab+sqrtbc
      +sqrtcageq 3$






      share|cite|improve this answer











      $endgroup$















        0












        0








        0





        $begingroup$

        I consider function $ f(x)=sqrt24x^2+25$
        And $f’(x)=frac24xsqrt24x^2+25$,
        $f’’(x)=frac600(24x^2+25)sqrt24x^2+25>0$
        So $f(x)+f(y)+f(z)geq 3f(fracx+y+z3)$



        (inequalyti Jensen’s)
        But can not prove that $sqrtab+sqrtbc
        +sqrtcageq 3$






        share|cite|improve this answer











        $endgroup$



        I consider function $ f(x)=sqrt24x^2+25$
        And $f’(x)=frac24xsqrt24x^2+25$,
        $f’’(x)=frac600(24x^2+25)sqrt24x^2+25>0$
        So $f(x)+f(y)+f(z)geq 3f(fracx+y+z3)$



        (inequalyti Jensen’s)
        But can not prove that $sqrtab+sqrtbc
        +sqrtcageq 3$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Feb 3 at 8:27

























        answered Feb 3 at 8:21









        Hai SmitHai Smit

        677




        677





















            0












            $begingroup$

            What are the allowed values of $a,b,c$? If they are integers greater than zero then how about this:



            Firstly $a = b = c = 1$ meets your constraint, and with these values $3sqrt24 +25 = 21$



            By my assumption that they are positive integers any valid $a,b$ would satisfy $sqrt24ab + 25 ge sqrt24 + 25 = 7$



            And since the problem is symmetric in $a,b,c$, we can say that



            $sqrt24ab+25 + sqrt24bc + 25 + sqrt24ca + 25 ge sqrt24+25 + sqrt24+25 + sqrt24+25 = 21$






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              $ a,b,c>0 $ and can not integers
              $endgroup$
              – Hai Smit
              Feb 3 at 8:57










            • $begingroup$
              Ok. By 'can not' I guess you mean that non-integer values are allowed.
              $endgroup$
              – mrblewog
              Feb 3 at 9:00






            • 1




              $begingroup$
              Example $a=2,c=1, b=frac12$ then $LHS=21,626>21$
              $endgroup$
              – Hai Smit
              Feb 3 at 9:04











            • $begingroup$
              Yup, your example is fine.
              $endgroup$
              – mrblewog
              Feb 3 at 9:05











            • $begingroup$
              So has @farruhota provided you with a counterexample when some of $a,b,c$ are non-integer?
              $endgroup$
              – mrblewog
              Feb 3 at 9:18
















            0












            $begingroup$

            What are the allowed values of $a,b,c$? If they are integers greater than zero then how about this:



            Firstly $a = b = c = 1$ meets your constraint, and with these values $3sqrt24 +25 = 21$



            By my assumption that they are positive integers any valid $a,b$ would satisfy $sqrt24ab + 25 ge sqrt24 + 25 = 7$



            And since the problem is symmetric in $a,b,c$, we can say that



            $sqrt24ab+25 + sqrt24bc + 25 + sqrt24ca + 25 ge sqrt24+25 + sqrt24+25 + sqrt24+25 = 21$






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              $ a,b,c>0 $ and can not integers
              $endgroup$
              – Hai Smit
              Feb 3 at 8:57










            • $begingroup$
              Ok. By 'can not' I guess you mean that non-integer values are allowed.
              $endgroup$
              – mrblewog
              Feb 3 at 9:00






            • 1




              $begingroup$
              Example $a=2,c=1, b=frac12$ then $LHS=21,626>21$
              $endgroup$
              – Hai Smit
              Feb 3 at 9:04











            • $begingroup$
              Yup, your example is fine.
              $endgroup$
              – mrblewog
              Feb 3 at 9:05











            • $begingroup$
              So has @farruhota provided you with a counterexample when some of $a,b,c$ are non-integer?
              $endgroup$
              – mrblewog
              Feb 3 at 9:18














            0












            0








            0





            $begingroup$

            What are the allowed values of $a,b,c$? If they are integers greater than zero then how about this:



            Firstly $a = b = c = 1$ meets your constraint, and with these values $3sqrt24 +25 = 21$



            By my assumption that they are positive integers any valid $a,b$ would satisfy $sqrt24ab + 25 ge sqrt24 + 25 = 7$



            And since the problem is symmetric in $a,b,c$, we can say that



            $sqrt24ab+25 + sqrt24bc + 25 + sqrt24ca + 25 ge sqrt24+25 + sqrt24+25 + sqrt24+25 = 21$






            share|cite|improve this answer









            $endgroup$



            What are the allowed values of $a,b,c$? If they are integers greater than zero then how about this:



            Firstly $a = b = c = 1$ meets your constraint, and with these values $3sqrt24 +25 = 21$



            By my assumption that they are positive integers any valid $a,b$ would satisfy $sqrt24ab + 25 ge sqrt24 + 25 = 7$



            And since the problem is symmetric in $a,b,c$, we can say that



            $sqrt24ab+25 + sqrt24bc + 25 + sqrt24ca + 25 ge sqrt24+25 + sqrt24+25 + sqrt24+25 = 21$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Feb 3 at 8:52









            mrblewogmrblewog

            1626




            1626











            • $begingroup$
              $ a,b,c>0 $ and can not integers
              $endgroup$
              – Hai Smit
              Feb 3 at 8:57










            • $begingroup$
              Ok. By 'can not' I guess you mean that non-integer values are allowed.
              $endgroup$
              – mrblewog
              Feb 3 at 9:00






            • 1




              $begingroup$
              Example $a=2,c=1, b=frac12$ then $LHS=21,626>21$
              $endgroup$
              – Hai Smit
              Feb 3 at 9:04











            • $begingroup$
              Yup, your example is fine.
              $endgroup$
              – mrblewog
              Feb 3 at 9:05











            • $begingroup$
              So has @farruhota provided you with a counterexample when some of $a,b,c$ are non-integer?
              $endgroup$
              – mrblewog
              Feb 3 at 9:18

















            • $begingroup$
              $ a,b,c>0 $ and can not integers
              $endgroup$
              – Hai Smit
              Feb 3 at 8:57










            • $begingroup$
              Ok. By 'can not' I guess you mean that non-integer values are allowed.
              $endgroup$
              – mrblewog
              Feb 3 at 9:00






            • 1




              $begingroup$
              Example $a=2,c=1, b=frac12$ then $LHS=21,626>21$
              $endgroup$
              – Hai Smit
              Feb 3 at 9:04











            • $begingroup$
              Yup, your example is fine.
              $endgroup$
              – mrblewog
              Feb 3 at 9:05











            • $begingroup$
              So has @farruhota provided you with a counterexample when some of $a,b,c$ are non-integer?
              $endgroup$
              – mrblewog
              Feb 3 at 9:18
















            $begingroup$
            $ a,b,c>0 $ and can not integers
            $endgroup$
            – Hai Smit
            Feb 3 at 8:57




            $begingroup$
            $ a,b,c>0 $ and can not integers
            $endgroup$
            – Hai Smit
            Feb 3 at 8:57












            $begingroup$
            Ok. By 'can not' I guess you mean that non-integer values are allowed.
            $endgroup$
            – mrblewog
            Feb 3 at 9:00




            $begingroup$
            Ok. By 'can not' I guess you mean that non-integer values are allowed.
            $endgroup$
            – mrblewog
            Feb 3 at 9:00




            1




            1




            $begingroup$
            Example $a=2,c=1, b=frac12$ then $LHS=21,626>21$
            $endgroup$
            – Hai Smit
            Feb 3 at 9:04





            $begingroup$
            Example $a=2,c=1, b=frac12$ then $LHS=21,626>21$
            $endgroup$
            – Hai Smit
            Feb 3 at 9:04













            $begingroup$
            Yup, your example is fine.
            $endgroup$
            – mrblewog
            Feb 3 at 9:05





            $begingroup$
            Yup, your example is fine.
            $endgroup$
            – mrblewog
            Feb 3 at 9:05













            $begingroup$
            So has @farruhota provided you with a counterexample when some of $a,b,c$ are non-integer?
            $endgroup$
            – mrblewog
            Feb 3 at 9:18





            $begingroup$
            So has @farruhota provided you with a counterexample when some of $a,b,c$ are non-integer?
            $endgroup$
            – mrblewog
            Feb 3 at 9:18


















            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098290%2fsqrt24ab25-sqrt24bc25-sqrt24ca25-geq-21-if-abc-abbcca%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown






            Popular posts from this blog

            How to check contact read email or not when send email to Individual?

            Displaying single band from multi-band raster using QGIS

            How many registers does an x86_64 CPU actually have?