Differentiation under the integral sign - what transformations to use?
Clash Royale CLAN TAG#URR8PPP
$begingroup$
Need some help with this integral
$$I (alpha) = int_1^infty arctan(alpha x) over x^2sqrtx^2-1 dx$$
Taking the first derivative with respect to $alpha$
$$I' (alpha) = int_1^infty dxover (1+alpha^2 x^2) xsqrtx^2-1 $$
What transformations to use in order to solve $I'(alpha)$?
calculus integration
$endgroup$
add a comment |
$begingroup$
Need some help with this integral
$$I (alpha) = int_1^infty arctan(alpha x) over x^2sqrtx^2-1 dx$$
Taking the first derivative with respect to $alpha$
$$I' (alpha) = int_1^infty dxover (1+alpha^2 x^2) xsqrtx^2-1 $$
What transformations to use in order to solve $I'(alpha)$?
calculus integration
$endgroup$
add a comment |
$begingroup$
Need some help with this integral
$$I (alpha) = int_1^infty arctan(alpha x) over x^2sqrtx^2-1 dx$$
Taking the first derivative with respect to $alpha$
$$I' (alpha) = int_1^infty dxover (1+alpha^2 x^2) xsqrtx^2-1 $$
What transformations to use in order to solve $I'(alpha)$?
calculus integration
$endgroup$
Need some help with this integral
$$I (alpha) = int_1^infty arctan(alpha x) over x^2sqrtx^2-1 dx$$
Taking the first derivative with respect to $alpha$
$$I' (alpha) = int_1^infty dxover (1+alpha^2 x^2) xsqrtx^2-1 $$
What transformations to use in order to solve $I'(alpha)$?
calculus integration
calculus integration
edited Jan 21 at 1:54
El borito
674216
674216
asked Jan 21 at 1:44
KatKat
485
485
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Substitute
$$u=sqrtx^2-1implies du=fracxsqrtx^2-1dximplies dx=fracsqrtx^2-1xdu$$
Then
$$int dxover (1+alpha^2 x^2) xsqrtx^2-1 =int duover x^2(1+alpha^2 x^2)=int duover (u^2+1)(a^2u^2+a^2+1) $$
Perform partial fraction decomposition
$$int duover (u^2+1)(a^2u^2+a^2+1) =intfracduu^2+1-a^2intfracdua^2u^2+a^2+1$$
Sure you know that
$$intfracduu^2+1=arctan(u)+C$$
To solve for
$$intfracdua^2u^2+a^2+1$$
Use substitution
$$v=fracausqrta^2+1implies du=fraca^2+1a$$
$$intfracdua^2u^2+a^2+1=intfracsqrta^2+1dva((a^2+1)v^2+a^2+1)=frac1asqrta^2+1intfracdvv^2+1=fracarctan(v)asqrta^2+1+C$$
Now plug in back $x$, you would get
$$int_1^infty dxover (1+alpha^2 x^2) xsqrtx^2-1 =left[arctanleft(sqrtx^2-1right)-fracaarctanleft(fracasqrtx^2-1a^2+1right)sqrta^2+1right]_1^infty$$
I think you can handle the rest of the calculation.
$endgroup$
$begingroup$
Perfect, super clear and so easy now! Thank you so much for your help!!!
$endgroup$
– Kat
Jan 21 at 11:10
$begingroup$
You are welcome
$endgroup$
– Larry
Jan 21 at 13:46
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081395%2fdifferentiation-under-the-integral-sign-what-transformations-to-use%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Substitute
$$u=sqrtx^2-1implies du=fracxsqrtx^2-1dximplies dx=fracsqrtx^2-1xdu$$
Then
$$int dxover (1+alpha^2 x^2) xsqrtx^2-1 =int duover x^2(1+alpha^2 x^2)=int duover (u^2+1)(a^2u^2+a^2+1) $$
Perform partial fraction decomposition
$$int duover (u^2+1)(a^2u^2+a^2+1) =intfracduu^2+1-a^2intfracdua^2u^2+a^2+1$$
Sure you know that
$$intfracduu^2+1=arctan(u)+C$$
To solve for
$$intfracdua^2u^2+a^2+1$$
Use substitution
$$v=fracausqrta^2+1implies du=fraca^2+1a$$
$$intfracdua^2u^2+a^2+1=intfracsqrta^2+1dva((a^2+1)v^2+a^2+1)=frac1asqrta^2+1intfracdvv^2+1=fracarctan(v)asqrta^2+1+C$$
Now plug in back $x$, you would get
$$int_1^infty dxover (1+alpha^2 x^2) xsqrtx^2-1 =left[arctanleft(sqrtx^2-1right)-fracaarctanleft(fracasqrtx^2-1a^2+1right)sqrta^2+1right]_1^infty$$
I think you can handle the rest of the calculation.
$endgroup$
$begingroup$
Perfect, super clear and so easy now! Thank you so much for your help!!!
$endgroup$
– Kat
Jan 21 at 11:10
$begingroup$
You are welcome
$endgroup$
– Larry
Jan 21 at 13:46
add a comment |
$begingroup$
Substitute
$$u=sqrtx^2-1implies du=fracxsqrtx^2-1dximplies dx=fracsqrtx^2-1xdu$$
Then
$$int dxover (1+alpha^2 x^2) xsqrtx^2-1 =int duover x^2(1+alpha^2 x^2)=int duover (u^2+1)(a^2u^2+a^2+1) $$
Perform partial fraction decomposition
$$int duover (u^2+1)(a^2u^2+a^2+1) =intfracduu^2+1-a^2intfracdua^2u^2+a^2+1$$
Sure you know that
$$intfracduu^2+1=arctan(u)+C$$
To solve for
$$intfracdua^2u^2+a^2+1$$
Use substitution
$$v=fracausqrta^2+1implies du=fraca^2+1a$$
$$intfracdua^2u^2+a^2+1=intfracsqrta^2+1dva((a^2+1)v^2+a^2+1)=frac1asqrta^2+1intfracdvv^2+1=fracarctan(v)asqrta^2+1+C$$
Now plug in back $x$, you would get
$$int_1^infty dxover (1+alpha^2 x^2) xsqrtx^2-1 =left[arctanleft(sqrtx^2-1right)-fracaarctanleft(fracasqrtx^2-1a^2+1right)sqrta^2+1right]_1^infty$$
I think you can handle the rest of the calculation.
$endgroup$
$begingroup$
Perfect, super clear and so easy now! Thank you so much for your help!!!
$endgroup$
– Kat
Jan 21 at 11:10
$begingroup$
You are welcome
$endgroup$
– Larry
Jan 21 at 13:46
add a comment |
$begingroup$
Substitute
$$u=sqrtx^2-1implies du=fracxsqrtx^2-1dximplies dx=fracsqrtx^2-1xdu$$
Then
$$int dxover (1+alpha^2 x^2) xsqrtx^2-1 =int duover x^2(1+alpha^2 x^2)=int duover (u^2+1)(a^2u^2+a^2+1) $$
Perform partial fraction decomposition
$$int duover (u^2+1)(a^2u^2+a^2+1) =intfracduu^2+1-a^2intfracdua^2u^2+a^2+1$$
Sure you know that
$$intfracduu^2+1=arctan(u)+C$$
To solve for
$$intfracdua^2u^2+a^2+1$$
Use substitution
$$v=fracausqrta^2+1implies du=fraca^2+1a$$
$$intfracdua^2u^2+a^2+1=intfracsqrta^2+1dva((a^2+1)v^2+a^2+1)=frac1asqrta^2+1intfracdvv^2+1=fracarctan(v)asqrta^2+1+C$$
Now plug in back $x$, you would get
$$int_1^infty dxover (1+alpha^2 x^2) xsqrtx^2-1 =left[arctanleft(sqrtx^2-1right)-fracaarctanleft(fracasqrtx^2-1a^2+1right)sqrta^2+1right]_1^infty$$
I think you can handle the rest of the calculation.
$endgroup$
Substitute
$$u=sqrtx^2-1implies du=fracxsqrtx^2-1dximplies dx=fracsqrtx^2-1xdu$$
Then
$$int dxover (1+alpha^2 x^2) xsqrtx^2-1 =int duover x^2(1+alpha^2 x^2)=int duover (u^2+1)(a^2u^2+a^2+1) $$
Perform partial fraction decomposition
$$int duover (u^2+1)(a^2u^2+a^2+1) =intfracduu^2+1-a^2intfracdua^2u^2+a^2+1$$
Sure you know that
$$intfracduu^2+1=arctan(u)+C$$
To solve for
$$intfracdua^2u^2+a^2+1$$
Use substitution
$$v=fracausqrta^2+1implies du=fraca^2+1a$$
$$intfracdua^2u^2+a^2+1=intfracsqrta^2+1dva((a^2+1)v^2+a^2+1)=frac1asqrta^2+1intfracdvv^2+1=fracarctan(v)asqrta^2+1+C$$
Now plug in back $x$, you would get
$$int_1^infty dxover (1+alpha^2 x^2) xsqrtx^2-1 =left[arctanleft(sqrtx^2-1right)-fracaarctanleft(fracasqrtx^2-1a^2+1right)sqrta^2+1right]_1^infty$$
I think you can handle the rest of the calculation.
edited Jan 21 at 2:53
answered Jan 21 at 2:46
LarryLarry
2,40631129
2,40631129
$begingroup$
Perfect, super clear and so easy now! Thank you so much for your help!!!
$endgroup$
– Kat
Jan 21 at 11:10
$begingroup$
You are welcome
$endgroup$
– Larry
Jan 21 at 13:46
add a comment |
$begingroup$
Perfect, super clear and so easy now! Thank you so much for your help!!!
$endgroup$
– Kat
Jan 21 at 11:10
$begingroup$
You are welcome
$endgroup$
– Larry
Jan 21 at 13:46
$begingroup$
Perfect, super clear and so easy now! Thank you so much for your help!!!
$endgroup$
– Kat
Jan 21 at 11:10
$begingroup$
Perfect, super clear and so easy now! Thank you so much for your help!!!
$endgroup$
– Kat
Jan 21 at 11:10
$begingroup$
You are welcome
$endgroup$
– Larry
Jan 21 at 13:46
$begingroup$
You are welcome
$endgroup$
– Larry
Jan 21 at 13:46
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081395%2fdifferentiation-under-the-integral-sign-what-transformations-to-use%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown