Differentiation under the integral sign - what transformations to use?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP












7












$begingroup$


Need some help with this integral



$$I (alpha) = int_1^infty arctan(alpha x) over x^2sqrtx^2-1 dx$$



Taking the first derivative with respect to $alpha$



$$I' (alpha) = int_1^infty dxover (1+alpha^2 x^2) xsqrtx^2-1 $$



What transformations to use in order to solve $I'(alpha)$?










share|cite|improve this question











$endgroup$
















    7












    $begingroup$


    Need some help with this integral



    $$I (alpha) = int_1^infty arctan(alpha x) over x^2sqrtx^2-1 dx$$



    Taking the first derivative with respect to $alpha$



    $$I' (alpha) = int_1^infty dxover (1+alpha^2 x^2) xsqrtx^2-1 $$



    What transformations to use in order to solve $I'(alpha)$?










    share|cite|improve this question











    $endgroup$














      7












      7








      7





      $begingroup$


      Need some help with this integral



      $$I (alpha) = int_1^infty arctan(alpha x) over x^2sqrtx^2-1 dx$$



      Taking the first derivative with respect to $alpha$



      $$I' (alpha) = int_1^infty dxover (1+alpha^2 x^2) xsqrtx^2-1 $$



      What transformations to use in order to solve $I'(alpha)$?










      share|cite|improve this question











      $endgroup$




      Need some help with this integral



      $$I (alpha) = int_1^infty arctan(alpha x) over x^2sqrtx^2-1 dx$$



      Taking the first derivative with respect to $alpha$



      $$I' (alpha) = int_1^infty dxover (1+alpha^2 x^2) xsqrtx^2-1 $$



      What transformations to use in order to solve $I'(alpha)$?







      calculus integration






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 21 at 1:54









      El borito

      674216




      674216










      asked Jan 21 at 1:44









      KatKat

      485




      485




















          1 Answer
          1






          active

          oldest

          votes


















          7












          $begingroup$

          Substitute
          $$u=sqrtx^2-1implies du=fracxsqrtx^2-1dximplies dx=fracsqrtx^2-1xdu$$
          Then
          $$int dxover (1+alpha^2 x^2) xsqrtx^2-1 =int duover x^2(1+alpha^2 x^2)=int duover (u^2+1)(a^2u^2+a^2+1) $$
          Perform partial fraction decomposition
          $$int duover (u^2+1)(a^2u^2+a^2+1) =intfracduu^2+1-a^2intfracdua^2u^2+a^2+1$$
          Sure you know that
          $$intfracduu^2+1=arctan(u)+C$$
          To solve for
          $$intfracdua^2u^2+a^2+1$$
          Use substitution
          $$v=fracausqrta^2+1implies du=fraca^2+1a$$
          $$intfracdua^2u^2+a^2+1=intfracsqrta^2+1dva((a^2+1)v^2+a^2+1)=frac1asqrta^2+1intfracdvv^2+1=fracarctan(v)asqrta^2+1+C$$
          Now plug in back $x$, you would get



          $$int_1^infty dxover (1+alpha^2 x^2) xsqrtx^2-1 =left[arctanleft(sqrtx^2-1right)-fracaarctanleft(fracasqrtx^2-1a^2+1right)sqrta^2+1right]_1^infty$$
          I think you can handle the rest of the calculation.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Perfect, super clear and so easy now! Thank you so much for your help!!!
            $endgroup$
            – Kat
            Jan 21 at 11:10










          • $begingroup$
            You are welcome
            $endgroup$
            – Larry
            Jan 21 at 13:46










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081395%2fdifferentiation-under-the-integral-sign-what-transformations-to-use%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          7












          $begingroup$

          Substitute
          $$u=sqrtx^2-1implies du=fracxsqrtx^2-1dximplies dx=fracsqrtx^2-1xdu$$
          Then
          $$int dxover (1+alpha^2 x^2) xsqrtx^2-1 =int duover x^2(1+alpha^2 x^2)=int duover (u^2+1)(a^2u^2+a^2+1) $$
          Perform partial fraction decomposition
          $$int duover (u^2+1)(a^2u^2+a^2+1) =intfracduu^2+1-a^2intfracdua^2u^2+a^2+1$$
          Sure you know that
          $$intfracduu^2+1=arctan(u)+C$$
          To solve for
          $$intfracdua^2u^2+a^2+1$$
          Use substitution
          $$v=fracausqrta^2+1implies du=fraca^2+1a$$
          $$intfracdua^2u^2+a^2+1=intfracsqrta^2+1dva((a^2+1)v^2+a^2+1)=frac1asqrta^2+1intfracdvv^2+1=fracarctan(v)asqrta^2+1+C$$
          Now plug in back $x$, you would get



          $$int_1^infty dxover (1+alpha^2 x^2) xsqrtx^2-1 =left[arctanleft(sqrtx^2-1right)-fracaarctanleft(fracasqrtx^2-1a^2+1right)sqrta^2+1right]_1^infty$$
          I think you can handle the rest of the calculation.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Perfect, super clear and so easy now! Thank you so much for your help!!!
            $endgroup$
            – Kat
            Jan 21 at 11:10










          • $begingroup$
            You are welcome
            $endgroup$
            – Larry
            Jan 21 at 13:46















          7












          $begingroup$

          Substitute
          $$u=sqrtx^2-1implies du=fracxsqrtx^2-1dximplies dx=fracsqrtx^2-1xdu$$
          Then
          $$int dxover (1+alpha^2 x^2) xsqrtx^2-1 =int duover x^2(1+alpha^2 x^2)=int duover (u^2+1)(a^2u^2+a^2+1) $$
          Perform partial fraction decomposition
          $$int duover (u^2+1)(a^2u^2+a^2+1) =intfracduu^2+1-a^2intfracdua^2u^2+a^2+1$$
          Sure you know that
          $$intfracduu^2+1=arctan(u)+C$$
          To solve for
          $$intfracdua^2u^2+a^2+1$$
          Use substitution
          $$v=fracausqrta^2+1implies du=fraca^2+1a$$
          $$intfracdua^2u^2+a^2+1=intfracsqrta^2+1dva((a^2+1)v^2+a^2+1)=frac1asqrta^2+1intfracdvv^2+1=fracarctan(v)asqrta^2+1+C$$
          Now plug in back $x$, you would get



          $$int_1^infty dxover (1+alpha^2 x^2) xsqrtx^2-1 =left[arctanleft(sqrtx^2-1right)-fracaarctanleft(fracasqrtx^2-1a^2+1right)sqrta^2+1right]_1^infty$$
          I think you can handle the rest of the calculation.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Perfect, super clear and so easy now! Thank you so much for your help!!!
            $endgroup$
            – Kat
            Jan 21 at 11:10










          • $begingroup$
            You are welcome
            $endgroup$
            – Larry
            Jan 21 at 13:46













          7












          7








          7





          $begingroup$

          Substitute
          $$u=sqrtx^2-1implies du=fracxsqrtx^2-1dximplies dx=fracsqrtx^2-1xdu$$
          Then
          $$int dxover (1+alpha^2 x^2) xsqrtx^2-1 =int duover x^2(1+alpha^2 x^2)=int duover (u^2+1)(a^2u^2+a^2+1) $$
          Perform partial fraction decomposition
          $$int duover (u^2+1)(a^2u^2+a^2+1) =intfracduu^2+1-a^2intfracdua^2u^2+a^2+1$$
          Sure you know that
          $$intfracduu^2+1=arctan(u)+C$$
          To solve for
          $$intfracdua^2u^2+a^2+1$$
          Use substitution
          $$v=fracausqrta^2+1implies du=fraca^2+1a$$
          $$intfracdua^2u^2+a^2+1=intfracsqrta^2+1dva((a^2+1)v^2+a^2+1)=frac1asqrta^2+1intfracdvv^2+1=fracarctan(v)asqrta^2+1+C$$
          Now plug in back $x$, you would get



          $$int_1^infty dxover (1+alpha^2 x^2) xsqrtx^2-1 =left[arctanleft(sqrtx^2-1right)-fracaarctanleft(fracasqrtx^2-1a^2+1right)sqrta^2+1right]_1^infty$$
          I think you can handle the rest of the calculation.






          share|cite|improve this answer











          $endgroup$



          Substitute
          $$u=sqrtx^2-1implies du=fracxsqrtx^2-1dximplies dx=fracsqrtx^2-1xdu$$
          Then
          $$int dxover (1+alpha^2 x^2) xsqrtx^2-1 =int duover x^2(1+alpha^2 x^2)=int duover (u^2+1)(a^2u^2+a^2+1) $$
          Perform partial fraction decomposition
          $$int duover (u^2+1)(a^2u^2+a^2+1) =intfracduu^2+1-a^2intfracdua^2u^2+a^2+1$$
          Sure you know that
          $$intfracduu^2+1=arctan(u)+C$$
          To solve for
          $$intfracdua^2u^2+a^2+1$$
          Use substitution
          $$v=fracausqrta^2+1implies du=fraca^2+1a$$
          $$intfracdua^2u^2+a^2+1=intfracsqrta^2+1dva((a^2+1)v^2+a^2+1)=frac1asqrta^2+1intfracdvv^2+1=fracarctan(v)asqrta^2+1+C$$
          Now plug in back $x$, you would get



          $$int_1^infty dxover (1+alpha^2 x^2) xsqrtx^2-1 =left[arctanleft(sqrtx^2-1right)-fracaarctanleft(fracasqrtx^2-1a^2+1right)sqrta^2+1right]_1^infty$$
          I think you can handle the rest of the calculation.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 21 at 2:53

























          answered Jan 21 at 2:46









          LarryLarry

          2,40631129




          2,40631129











          • $begingroup$
            Perfect, super clear and so easy now! Thank you so much for your help!!!
            $endgroup$
            – Kat
            Jan 21 at 11:10










          • $begingroup$
            You are welcome
            $endgroup$
            – Larry
            Jan 21 at 13:46
















          • $begingroup$
            Perfect, super clear and so easy now! Thank you so much for your help!!!
            $endgroup$
            – Kat
            Jan 21 at 11:10










          • $begingroup$
            You are welcome
            $endgroup$
            – Larry
            Jan 21 at 13:46















          $begingroup$
          Perfect, super clear and so easy now! Thank you so much for your help!!!
          $endgroup$
          – Kat
          Jan 21 at 11:10




          $begingroup$
          Perfect, super clear and so easy now! Thank you so much for your help!!!
          $endgroup$
          – Kat
          Jan 21 at 11:10












          $begingroup$
          You are welcome
          $endgroup$
          – Larry
          Jan 21 at 13:46




          $begingroup$
          You are welcome
          $endgroup$
          – Larry
          Jan 21 at 13:46

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081395%2fdifferentiation-under-the-integral-sign-what-transformations-to-use%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown






          Popular posts from this blog

          How to check contact read email or not when send email to Individual?

          How many registers does an x86_64 CPU actually have?

          Nur Jahan