A problem when integrate Cos[n*x]*Cos[k*x] [duplicate]

Multi tool use
Multi tool use

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP












3












$begingroup$



This question already has an answer here:



  • How to force correct answers for Integrals of Cos[mx]*Cos[nx]? [duplicate]

    2 answers



When integrate the indefinite integral Cos[nx]Cos[kx] about x, where both k and n are positive integer, the result is Pi when n equals to k and 0 when n is unequal to k. However, the code



sol = Integrate[Cos[n*x]*Cos[k*x], x, -Pi, Pi, 
Assumptions -> n ∈ Integers && k ∈ Integers && n > 0 && k > 0]


gives the result (k Sin[π k + π n] - n Sin[π k + π n] +
k Sin[π k - π n] + n Sin[π k - π n])/(k^2 - n^2)
.
enter image description here



And then use the Simplify function,



Simplify[sol, Assumptions -> n ∈ Integers && k ∈ Integers && n > 0 && k > 0]


gives the result 0. Shouldn't that Integrate returns a Piecewise function like Piecewise[Pi, n == k, 0, n != k] instead?










share|improve this question











$endgroup$



marked as duplicate by Daniel Lichtblau, m_goldberg, march, Henrik Schumacher, MarcoB Jan 29 at 6:34


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.






















    3












    $begingroup$



    This question already has an answer here:



    • How to force correct answers for Integrals of Cos[mx]*Cos[nx]? [duplicate]

      2 answers



    When integrate the indefinite integral Cos[nx]Cos[kx] about x, where both k and n are positive integer, the result is Pi when n equals to k and 0 when n is unequal to k. However, the code



    sol = Integrate[Cos[n*x]*Cos[k*x], x, -Pi, Pi, 
    Assumptions -> n ∈ Integers && k ∈ Integers && n > 0 && k > 0]


    gives the result (k Sin[π k + π n] - n Sin[π k + π n] +
    k Sin[π k - π n] + n Sin[π k - π n])/(k^2 - n^2)
    .
    enter image description here



    And then use the Simplify function,



    Simplify[sol, Assumptions -> n ∈ Integers && k ∈ Integers && n > 0 && k > 0]


    gives the result 0. Shouldn't that Integrate returns a Piecewise function like Piecewise[Pi, n == k, 0, n != k] instead?










    share|improve this question











    $endgroup$



    marked as duplicate by Daniel Lichtblau, m_goldberg, march, Henrik Schumacher, MarcoB Jan 29 at 6:34


    This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.




















      3












      3








      3


      1



      $begingroup$



      This question already has an answer here:



      • How to force correct answers for Integrals of Cos[mx]*Cos[nx]? [duplicate]

        2 answers



      When integrate the indefinite integral Cos[nx]Cos[kx] about x, where both k and n are positive integer, the result is Pi when n equals to k and 0 when n is unequal to k. However, the code



      sol = Integrate[Cos[n*x]*Cos[k*x], x, -Pi, Pi, 
      Assumptions -> n ∈ Integers && k ∈ Integers && n > 0 && k > 0]


      gives the result (k Sin[π k + π n] - n Sin[π k + π n] +
      k Sin[π k - π n] + n Sin[π k - π n])/(k^2 - n^2)
      .
      enter image description here



      And then use the Simplify function,



      Simplify[sol, Assumptions -> n ∈ Integers && k ∈ Integers && n > 0 && k > 0]


      gives the result 0. Shouldn't that Integrate returns a Piecewise function like Piecewise[Pi, n == k, 0, n != k] instead?










      share|improve this question











      $endgroup$





      This question already has an answer here:



      • How to force correct answers for Integrals of Cos[mx]*Cos[nx]? [duplicate]

        2 answers



      When integrate the indefinite integral Cos[nx]Cos[kx] about x, where both k and n are positive integer, the result is Pi when n equals to k and 0 when n is unequal to k. However, the code



      sol = Integrate[Cos[n*x]*Cos[k*x], x, -Pi, Pi, 
      Assumptions -> n ∈ Integers && k ∈ Integers && n > 0 && k > 0]


      gives the result (k Sin[π k + π n] - n Sin[π k + π n] +
      k Sin[π k - π n] + n Sin[π k - π n])/(k^2 - n^2)
      .
      enter image description here



      And then use the Simplify function,



      Simplify[sol, Assumptions -> n ∈ Integers && k ∈ Integers && n > 0 && k > 0]


      gives the result 0. Shouldn't that Integrate returns a Piecewise function like Piecewise[Pi, n == k, 0, n != k] instead?





      This question already has an answer here:



      • How to force correct answers for Integrals of Cos[mx]*Cos[nx]? [duplicate]

        2 answers







      calculus-and-analysis






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Jan 24 at 3:42









      Mr.Wizard

      231k294761046




      231k294761046










      asked Jan 24 at 2:05









      shelure21shelure21

      184




      184




      marked as duplicate by Daniel Lichtblau, m_goldberg, march, Henrik Schumacher, MarcoB Jan 29 at 6:34


      This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









      marked as duplicate by Daniel Lichtblau, m_goldberg, march, Henrik Schumacher, MarcoB Jan 29 at 6:34


      This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.






















          1 Answer
          1






          active

          oldest

          votes


















          5












          $begingroup$

          This is well know issue. One way to handle it is



          Simplify[ sol, 
          Assumptions -> Element[n, Integers] && Element[k, Integers] && n > 0 && k > 0 && k != n]

          (* 0 *)


          And



          Simplify[ Limit[sol, k -> n], 
          Assumptions -> Element[n, Integers] && Element[k, Integers] && n > 0 && k > 0 && k == n ]

          (* Pi *)


          See



          should-integrate-detect-orthogonality-of-functions-in-the-integrand



          And



          What assumptions to use to check for orthogonality



          And



          should-integrate-have-given-zero-for-this-integral



          And



          proper-way-to-simplify-integral-result-in-mathematica-given-integer-constraints



          And



          usage-of-assuming-for-integration






          share|improve this answer









          $endgroup$












          • $begingroup$
            You can shorten the Limit to Limit[sol, k -> n, Assumptions -> Element[n, Integers]]
            $endgroup$
            – Bob Hanlon
            Jan 24 at 5:41










          • $begingroup$
            @BobHanlon thanks. I am sure you are right. I was only copying what the OP had in there. But good point.
            $endgroup$
            – Nasser
            Jan 24 at 5:56

















          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$

          This is well know issue. One way to handle it is



          Simplify[ sol, 
          Assumptions -> Element[n, Integers] && Element[k, Integers] && n > 0 && k > 0 && k != n]

          (* 0 *)


          And



          Simplify[ Limit[sol, k -> n], 
          Assumptions -> Element[n, Integers] && Element[k, Integers] && n > 0 && k > 0 && k == n ]

          (* Pi *)


          See



          should-integrate-detect-orthogonality-of-functions-in-the-integrand



          And



          What assumptions to use to check for orthogonality



          And



          should-integrate-have-given-zero-for-this-integral



          And



          proper-way-to-simplify-integral-result-in-mathematica-given-integer-constraints



          And



          usage-of-assuming-for-integration






          share|improve this answer









          $endgroup$












          • $begingroup$
            You can shorten the Limit to Limit[sol, k -> n, Assumptions -> Element[n, Integers]]
            $endgroup$
            – Bob Hanlon
            Jan 24 at 5:41










          • $begingroup$
            @BobHanlon thanks. I am sure you are right. I was only copying what the OP had in there. But good point.
            $endgroup$
            – Nasser
            Jan 24 at 5:56















          5












          $begingroup$

          This is well know issue. One way to handle it is



          Simplify[ sol, 
          Assumptions -> Element[n, Integers] && Element[k, Integers] && n > 0 && k > 0 && k != n]

          (* 0 *)


          And



          Simplify[ Limit[sol, k -> n], 
          Assumptions -> Element[n, Integers] && Element[k, Integers] && n > 0 && k > 0 && k == n ]

          (* Pi *)


          See



          should-integrate-detect-orthogonality-of-functions-in-the-integrand



          And



          What assumptions to use to check for orthogonality



          And



          should-integrate-have-given-zero-for-this-integral



          And



          proper-way-to-simplify-integral-result-in-mathematica-given-integer-constraints



          And



          usage-of-assuming-for-integration






          share|improve this answer









          $endgroup$












          • $begingroup$
            You can shorten the Limit to Limit[sol, k -> n, Assumptions -> Element[n, Integers]]
            $endgroup$
            – Bob Hanlon
            Jan 24 at 5:41










          • $begingroup$
            @BobHanlon thanks. I am sure you are right. I was only copying what the OP had in there. But good point.
            $endgroup$
            – Nasser
            Jan 24 at 5:56













          5












          5








          5





          $begingroup$

          This is well know issue. One way to handle it is



          Simplify[ sol, 
          Assumptions -> Element[n, Integers] && Element[k, Integers] && n > 0 && k > 0 && k != n]

          (* 0 *)


          And



          Simplify[ Limit[sol, k -> n], 
          Assumptions -> Element[n, Integers] && Element[k, Integers] && n > 0 && k > 0 && k == n ]

          (* Pi *)


          See



          should-integrate-detect-orthogonality-of-functions-in-the-integrand



          And



          What assumptions to use to check for orthogonality



          And



          should-integrate-have-given-zero-for-this-integral



          And



          proper-way-to-simplify-integral-result-in-mathematica-given-integer-constraints



          And



          usage-of-assuming-for-integration






          share|improve this answer









          $endgroup$



          This is well know issue. One way to handle it is



          Simplify[ sol, 
          Assumptions -> Element[n, Integers] && Element[k, Integers] && n > 0 && k > 0 && k != n]

          (* 0 *)


          And



          Simplify[ Limit[sol, k -> n], 
          Assumptions -> Element[n, Integers] && Element[k, Integers] && n > 0 && k > 0 && k == n ]

          (* Pi *)


          See



          should-integrate-detect-orthogonality-of-functions-in-the-integrand



          And



          What assumptions to use to check for orthogonality



          And



          should-integrate-have-given-zero-for-this-integral



          And



          proper-way-to-simplify-integral-result-in-mathematica-given-integer-constraints



          And



          usage-of-assuming-for-integration







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Jan 24 at 2:25









          NasserNasser

          57.8k488205




          57.8k488205











          • $begingroup$
            You can shorten the Limit to Limit[sol, k -> n, Assumptions -> Element[n, Integers]]
            $endgroup$
            – Bob Hanlon
            Jan 24 at 5:41










          • $begingroup$
            @BobHanlon thanks. I am sure you are right. I was only copying what the OP had in there. But good point.
            $endgroup$
            – Nasser
            Jan 24 at 5:56
















          • $begingroup$
            You can shorten the Limit to Limit[sol, k -> n, Assumptions -> Element[n, Integers]]
            $endgroup$
            – Bob Hanlon
            Jan 24 at 5:41










          • $begingroup$
            @BobHanlon thanks. I am sure you are right. I was only copying what the OP had in there. But good point.
            $endgroup$
            – Nasser
            Jan 24 at 5:56















          $begingroup$
          You can shorten the Limit to Limit[sol, k -> n, Assumptions -> Element[n, Integers]]
          $endgroup$
          – Bob Hanlon
          Jan 24 at 5:41




          $begingroup$
          You can shorten the Limit to Limit[sol, k -> n, Assumptions -> Element[n, Integers]]
          $endgroup$
          – Bob Hanlon
          Jan 24 at 5:41












          $begingroup$
          @BobHanlon thanks. I am sure you are right. I was only copying what the OP had in there. But good point.
          $endgroup$
          – Nasser
          Jan 24 at 5:56




          $begingroup$
          @BobHanlon thanks. I am sure you are right. I was only copying what the OP had in there. But good point.
          $endgroup$
          – Nasser
          Jan 24 at 5:56


          MhyJCJMHemFW1 aQfC8FZgbOlybsLC jTIvWLrgp,e troo
          nWIb,e6,0Z7q J2cMS8U3ZVM 0Dv6pzyf6 mIa9wFIVREU,wWprA

          Popular posts from this blog

          How to check contact read email or not when send email to Individual?

          How many registers does an x86_64 CPU actually have?

          Displaying single band from multi-band raster using QGIS