How to plot two sets of data with a Filling such that the fillings' intersection doesn't change color?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite












Consider two sets of data, data1 and data2 (they are given below). If I try to plot them,



ListLogPlot[data1, data2, 
PlotStyle -> Blue, Blue, Joined -> True, Filling -> Automatic]


I will obtain something like this: enter image description here



Is there any way to plot them in a way such that the area of their intersection will be the same color as the areas where they are not intersected? Likely without arbitrary opacity.



data1=0.2999999847368421, 0.00007847597621237087, 0.2999999847368421, 
0.000041788092286919155, 0.2999999847368421,
0.000022251964757397896, 0.2999999847368421,
0.0000220678601151695, 0.2999086890022088,
0.00002208484265800435, 0.299135470025212,
0.000022251964757397896, 0.29305964572645016,
0.000023559042135848565, 0.2923684065927977,
0.000023715417699775446, 0.29149457598987855,
0.00002391694676035076, 0.28622923423326985,
0.000025170342352025765, 0.2847368284487534,
0.000025544864044561507, 0.28283824980403144,
0.00002602887044236093, 0.27941745452266786,
0.00002693325175144503, 0.2771052503047091,
0.000027574767347538766, 0.27414093369651227,
0.00002842332559813959, 0.27262803295115967,
0.00002887289075546239, 0.26947367216066476,
0.000029839338905920736, 0.2674167233640278,
0.000030493723236879715, 0.26585724316222964,
0.00003099987331245628, 0.2653989013108051,
0.00003115287099495151, 0.2618420940166204,
0.00003235951331170112, 0.25910881151239357,
0.000033345050500262494, 0.2566121526469104,
0.00003427085042641089, 0.2542105158725761,
0.000035200684917703386, 0.2523827380016514,
0.000035933924343589724, 0.24776950863528088,
0.00003787531113975004, 0.2465789377285318,
0.000038403409002727274, 0.24567902263000313,
0.000038795354781778083, 0.2427631486565096,
0.00004014331161385088, 0.23939452236636505,
0.000041788092286919155, 0.23900139175396434,
0.000041974956094407755, 0.23894735958448746,
0.00004200725834238921, 0.23887469563243233,
0.00004203958544888939, 0.2323498453735351,
0.000045513079034589037, 0.23131578144044312,
0.000046097997889804963, 0.22991280821230217,
0.000046920871261138605, 0.22572438348871537,
0.00004945584514987175, 0.22368420329639882,
0.00005077423724654412, 0.22088757273140602,
0.00005264359063778916, 0.21912873245602082,
0.000053872622507582905, 0.21605262515235452,
0.000056131722625208974, 0.21256289227545141,
0.00005882848791880944, 0.21178408376368124,
0.00005944718178346996, 0.20842104700831018,
0.00006224574676266308, 0.20602313659049157,
0.00006437877343232213, 0.20259861495261233,
0.00006758604063277815, 0.20078946886426585,
0.00006936639909688728, 0.19950946540114126,
0.00007060462559901383, 0.19419568100982915,
0.00007203099599317158, 0.19315789072022155,
0.000070702457797849, 0.1915089779620479,
0.00006848623690747524, 0.1877043679595727,
0.0000655582201752986, 0.18552631257617724,
0.00006502581900288756, 0.18319547657564023,
0.00006473633752977752, 0.18022929678918553,
0.0000647164208590649, 0.1778947344321329,
0.00006579061639282816, 0.1759588922222545,
0.00006688264196152569, 0.17169966672487036,
0.000069698027991677, 0.17026315628808858,
0.00007074598227692727, 0.16915083886816806,
0.0000715890703672052, 0.1628570227132409,
0.00007702856693563057, 0.16263157814404428,
0.0000772540665362398, 0.16246575527909798,
0.00007740873598046131, 0.16137952235478703,
0.00007847597621237087, 0.1559371786636851,
0.00008479024550498915, 0.15499999999999997,
0.00008598570939586575, 0.15363429033701548,
0.0000878443636223182, 0.14952784545677286,
0.00009379466248802923, 0.14736842185595564,
0.00009723293672220618, 0.14409481765696008,
0.00010283357787557963, 0.14320049209320487,
0.00010446007275761177, 0.1397368437119113,
0.00011114188215085727, 0.13695884492949673,
0.00011716452189394137, 0.1342348783165591,
0.0001236085720280136, 0.132105265567867,
0.00012901013630317747, 0.13081408303519548,
0.00013246966302280202, 0.1257555540652051,
0.00014737401267806525, 0.12474012191469142,
0.00015065231188607817, 0.12447368742382268,
0.00015155898228429117, 0.12401348239414031,
0.00015308224162798693, 0.11874814063753161,
0.00017249445411395565, 0.11684210927977837,
0.0001805037702493432, 0.11336355547242224,
0.00019641246454919555, 0.11284559191674734,
0.0001989673011140506, 0.10921053113573405,
0.00021817518248477453, 0.10702874939582294,
0.0002311329610459566, 0.10215840142987279,
0.00026383042098478994, 0.10157895299168973,
0.0002681270934084663, 0.10129388671824277,
0.00027032239338430433, 0.10047595146305832,
0.00027676112692193297, 0.09562982481445986,
0.0003180103296691775, 0.09394737484764541,
0.0003344186780080345, 0.09030113499708517,
0.00037399586047134474, 0.09005519546705248,
0.0003768839705616018, 0.08986328810649669,
0.000379268855541332, 0.0863157967036011,
0.0004251992889145789, 0.08458490410208322,
0.00045052187423797835, 0.08046541697403586,
0.0005197437457472359, 0.07922640343258337,
0.0005435420441421504, 0.07868421855955678,
0.0005546081232062334, 0.0772551608358063,
0.0005848415758826891, 0.07400205159764678,
0.0006630728705670156, 0.07105264041551246,
0.0007465819667652495, 0.06890066952772653,
0.0008171453719603333, 0.0648482568169608,
0.000976053119336969, 0.0639297099358539,
0.0010179222593113134, 0.06342106227146814,
0.0010421678651143407, 0.061574652617965235,
0.0011368142898518605, 0.059100351891575864,
0.0012829449507075384, 0.05827869027987578,
0.0013375669973438838, 0.05578948412742382,
0.0015218623255611656, 0.054423774464439335,
0.0016374968051687928, 0.052420857837279254,
0.0018329796165180577, 0.04990743036747559,
0.0021178695173944147, 0.048157905983379504,
0.002355429130050617, 0.045558772313715974,
0.0027773557142080525, 0.04240441152322109,
0.003442245312276653, 0.04138897937270737,
0.0036963942496618823, 0.04052632783933518,
0.003935255900947914, 0.037409230613996765,
0.004997357778414752, 0.034321944240783525,
0.006464366915546581, 0.03363443146364672,
0.006871515294551954, 0.032894749695290854,
0.007340357190916253, 0.03006458192165723,
0.00960980353019457, 0.029078960623268695,
0.010620521351798435, 0.027826904834011422,
0.012139762227223483, 0.02671831377060655,
0.013689720812215192, 0.025263171551246535,
0.016196681390274872, 0.023599353367010308,
0.01987130548360278, 0.022580194859980952,
0.022797874696606883, 0.020711427067384165,
0.029399745399044594, 0.018960039505030245,
0.038365222254596924, 0.018287432153956024,
0.04281328422698936, 0.018065713941275055,
0.04437588266801011, 0.017631593407202217,
0.04774766079357238, 0.01649878102644564,
0.0586706142272511, 0.015658487632167324,
0.06831295475610606, 0.014859184159561115,
0.08040123611056546, 0.013815804335180057,
0.09971036507907274, 0.01348602178354533,
0.1072205750222915, 0.013113386131980664,
0.11676024205927839, 0.012086774911920015,
0.15098955580781592, 0.010000015263157896,
0.2660533148660376, 0.010000015263157896,
0.2835509385911756, 0.010000015263157896,
0.9999987396384276, 0.025263171551246535,
0.9999987396384276, 0.04052632783933518,
0.9999987396384276, 0.05578948412742382,
0.9999987396384276, 0.07105264041551246,
0.9999987396384276, 0.0863157967036011,
0.9999987396384276, 0.10157895299168973,
0.9999987396384276, 0.11684210927977837,
0.9999987396384276, 0.132105265567867,
0.9999987396384276, 0.14736842185595564,
0.9999987396384276, 0.16263157814404428,
0.9999987396384276, 0.1778947344321329,
0.9999987396384276, 0.19315789072022155,
0.9999987396384276, 0.20842104700831018,
0.9999987396384276, 0.22368420329639882,
0.9999987396384276, 0.23894735958448746,
0.9999987396384276, 0.2542105158725761,
0.9999987396384276, 0.2558203018873354,
0.9999987396384276, 0.260569543266527,
0.9002500410979579, 0.2618420940166204,
0.8757957440659601, 0.2640238757565315,
0.8351341545160378, 0.26662114624793726,
0.7901362222306625, 0.26947367216066476,
0.7443493438629281, 0.27036799772442,
0.7297218689571064, 0.2727174655075352,
0.6960563689327807, 0.27423036625288777,
0.6751722139909367, 0.2771052503047091,
0.6371246250347038, 0.27885850104532084,
0.6154467319250959, 0.2842505389234616,
0.5543124325647013, 0.2847368284487534,
0.5493035315917327, 0.2850405265047786,
0.5460174363420693, 0.2863466144635127,
0.532494677170081, 0.28855261752077555,
0.5110636800160765, 0.29126354188590853,
0.48606297039886726, 0.2923684065927977,
0.4762180131823315, 0.29410675190734686,
0.4612906069497988, 0.29751636811916365,
0.43375814254337697, 0.2999999847368421,
0.41514964772736146, 0.2999999847368421,
0.2835509385911756, 0.2999999847368421,
0.08040123611056546, 0.2999999847368421,
0.022797874696606883, 0.2999999847368421,
0.006464366915546581, 0.2999999847368421,
0.0018329796165180577, 0.2999999847368421,
0.0005197437457472359, 0.2999999847368421,
0.00014737401267806525, 0.2999999847368421,
0.00007847597621237087;

data2=0.026421, 0.880102, 0.0268178, 0.746742, 0.0271942,
0.634472, 0.0276739, 0.536112, 0.0280312, 0.47488, 0.0287076,
0.346523, 0.0291455, 0.296601, 0.0295175, 0.253896, 0.0300024,
0.215648, 0.030506, 0.181238, 0.0312802, 0.139177, 0.0319591,
0.119716, 0.0325865, 0.103702, 0.0332548,
0.0900265, 0.0339655, 0.0776198, 0.0344885,
0.0720466, 0.0357332, 0.0539909, 0.0364653,
0.0463016, 0.0372134, 0.0403451, 0.0379443,
0.035113, 0.0387223, 0.0304162, 0.0394182,
0.0275844, 0.0409623, 0.0203708, 0.0420865,
0.0178988, 0.0437596, 0.0155134, 0.0453807,
0.013276, 0.047063, 0.0115048, 0.0485016,
0.0112719, 0.0506136, 0.00833023, 0.0529264,
0.00747158, 0.0559817, 0.00688619, 0.0591538,
0.00619242, 0.0645948, 0.0056801, 0.0626333,
0.00566467, 0.0697434, 0.00456699, 0.0736612,
0.00417951, 0.0772273, 0.00379961, 0.0812595,
0.00349659, 0.0856752, 0.00315671, 0.0889625,
0.00310055, 0.0968806, 0.00250791, 0.102129,
0.00231113, 0.108357, 0.00218765, 0.114647,
0.00207634, 0.121303, 0.0019672, 0.126388,
0.0019222, 0.140037, 0.00170103, 0.148169,
0.00162699, 0.156771, 0.0015433, 0.165872,
0.00146304, 0.175501, 0.00138861, 0.183798,
0.00134368, 0.204696, 0.00118797, 0.216582,
0.00113424, 0.229153, 0.00107144, 0.242455,
0.00101211, 0.256528, 0.000956066, 0.267965,
0.000925368, 0.299199, 0.000814051, 0.316558,
0.000758552, 0.334914, 0.000694366, 0.354334,
0.000635234, 0.374881, 0.000582519, 0.387607,
0.000576501, 0.420909, 0.000451888, 0.441583,
0.000398565, 0.464751, 0.000346267, 0.489135,
0.000301422, 0.509853, 0.000278623, 0.545726,
0.000211186, 0.569648, 0.000185061, 0.593935,
0.000159681, 0.61827, 0.000137351, 0.637911,
0.000119888, 0.67462, 0.0000870067, 0.698866,
0.0000749829, 0.720831, 0.0000640726, 0.739399,
0.0000554034, 0.762664, 0.0000482517, 0.805269,
0.0000347985, 0.825927, 0.0000300192, 0.838617,
0.0000258637, 0.860889, 0.0000222026, 0.879836,
0.0000189785, 0.886325, 0.0000177987, 0.919887,
0.0000133371, 0.93044, 0.0000114575, 0.94442,
9.76004*10^-6, 0.960141, 8.29786*10^-6, 0.977934,
6.98367*10^-6, 0.967144, 6.4857*10^-6, 1.00723,
4.91017*10^-6, 1.01476, 4.25439*10^-6, 1.02665,
3.66046*10^-6, 1.03528, 3.15301*10^-6, 1.04571,
2.73125*10^-6, 1.05629, 2.43485*10^-6, 1.07346,
1.75992*10^-6, 1.08666, 1.50936*10^-6, 1.09757,
1.28898*10^-6, 1.10808, 1.10339*10^-6, 1.10932,
9.40047*10^-7, 1.11468, 8.59312*10^-7, 1.12268,
6.29552*10^-7, 1.13343, 5.25539*10^-7, 1.14154,
4.38902*10^-7, 1.15344, 3.62605*10^-7, 1.17927,
3.16306*10^-7, 1.20399, 2.032*10^-7, 1.19695,
2.42533*10^-7, 1.21411, 2.94621*10^-7, 1.22229,
4.40625*10^-7, 1.22096, 5.31288*10^-7, 1.22468,
7.08256*10^-7, 1.22694, 8.76305*10^-7, 1.20904,
1.30488*10^-6, 1.20948, 1.60216*10^-6, 1.20979,
1.84956*10^-6, 1.2101, 2.13517*10^-6, 1.21041,
2.46487*10^-6, 1.21114, 3.4547*10^-6, 1.21155,
4.16101*10^-6, 1.21186, 4.80354*10^-6, 1.21217,
5.5453*10^-6, 1.20669, 6.84148*10^-6, 1.20692,
8.6485*10^-6, 1.20884, 0.0000106246, 1.21093,
0.0000131545, 1.21286, 0.0000162406, 1.21186,
0.0000202058, 1.21529, 0.0000233107, 1.20996,
0.0000272315, 1.21282, 0.0000314739, 1.21313,
0.000036334, 1.21344, 0.0000419446, 1.21537,
0.0000515103, 1.21748, 0.0000636935, 1.21779,
0.0000735289, 1.2124, 0.0000840811, 1.21529,
0.0000981186, 1.2156, 0.00011327, 1.21592,
0.000130761, 1.21786, 0.000161477, 1.21998,
0.000200909, 1.2146, 0.000230834, 1.21748,
0.000268798, 1.2178, 0.000310305, 1.21811,
0.000358222, 1.22005, 0.000441824, 1.22218,
0.000548959, 1.21679, 0.000633728, 1.21968,
0.000736378, 1.21999, 0.000850087, 1.22031,
0.000981356, 1.22225, 0.00120889, 1.22438,
0.00149996, 1.21899, 0.00173982, 1.22188, 0.00201732, 1.2222,
0.00232883, 1.22251, 0.00268845, 1.22445, 0.00330769, 1.22658,
0.00409847, 1.2212, 0.00477648, 1.22409, 0.0055265, 1.2244,
0.00637989, 1.22472, 0.00736505, 1.22666, 0.00905029, 1.22879,
0.0111986, 1.2291, 0.0129278, 1.22366, 0.014748, 1.22658,
0.0172287, 1.2269, 0.0198891, 1.22721, 0.0229603, 1.23332,
0.0265346, 1.231, 0.0305987, 1.23132, 0.0353237, 1.22588,
0.040489, 1.22879, 0.0471983, 1.22911, 0.0544865, 1.22943,
0.0629002, 1.23139, 0.077628, 1.23353, 0.0965177, 1.22809,
0.111158, 1.23101, 0.129301, 1.23133, 0.149267, 1.23164,
0.172316, 1.23361, 0.212401, 1.23575, 0.263723, 1.23032,
0.30517, 1.23323, 0.354222, 1.23355, 0.40892, 1.23387,
0.472065, 1.23583, 0.581157, 1.23798, 0.720591, 1.23251,
0.82596, 0.026421, 0.880102;









share|improve this question



















  • 1




    That's really the way two translucent objects interact: stack a number of them and the color will darken. This is mentioned in the docs for Opacity.
    – J. M. is computer-less♦
    3 hours ago














up vote
2
down vote

favorite












Consider two sets of data, data1 and data2 (they are given below). If I try to plot them,



ListLogPlot[data1, data2, 
PlotStyle -> Blue, Blue, Joined -> True, Filling -> Automatic]


I will obtain something like this: enter image description here



Is there any way to plot them in a way such that the area of their intersection will be the same color as the areas where they are not intersected? Likely without arbitrary opacity.



data1=0.2999999847368421, 0.00007847597621237087, 0.2999999847368421, 
0.000041788092286919155, 0.2999999847368421,
0.000022251964757397896, 0.2999999847368421,
0.0000220678601151695, 0.2999086890022088,
0.00002208484265800435, 0.299135470025212,
0.000022251964757397896, 0.29305964572645016,
0.000023559042135848565, 0.2923684065927977,
0.000023715417699775446, 0.29149457598987855,
0.00002391694676035076, 0.28622923423326985,
0.000025170342352025765, 0.2847368284487534,
0.000025544864044561507, 0.28283824980403144,
0.00002602887044236093, 0.27941745452266786,
0.00002693325175144503, 0.2771052503047091,
0.000027574767347538766, 0.27414093369651227,
0.00002842332559813959, 0.27262803295115967,
0.00002887289075546239, 0.26947367216066476,
0.000029839338905920736, 0.2674167233640278,
0.000030493723236879715, 0.26585724316222964,
0.00003099987331245628, 0.2653989013108051,
0.00003115287099495151, 0.2618420940166204,
0.00003235951331170112, 0.25910881151239357,
0.000033345050500262494, 0.2566121526469104,
0.00003427085042641089, 0.2542105158725761,
0.000035200684917703386, 0.2523827380016514,
0.000035933924343589724, 0.24776950863528088,
0.00003787531113975004, 0.2465789377285318,
0.000038403409002727274, 0.24567902263000313,
0.000038795354781778083, 0.2427631486565096,
0.00004014331161385088, 0.23939452236636505,
0.000041788092286919155, 0.23900139175396434,
0.000041974956094407755, 0.23894735958448746,
0.00004200725834238921, 0.23887469563243233,
0.00004203958544888939, 0.2323498453735351,
0.000045513079034589037, 0.23131578144044312,
0.000046097997889804963, 0.22991280821230217,
0.000046920871261138605, 0.22572438348871537,
0.00004945584514987175, 0.22368420329639882,
0.00005077423724654412, 0.22088757273140602,
0.00005264359063778916, 0.21912873245602082,
0.000053872622507582905, 0.21605262515235452,
0.000056131722625208974, 0.21256289227545141,
0.00005882848791880944, 0.21178408376368124,
0.00005944718178346996, 0.20842104700831018,
0.00006224574676266308, 0.20602313659049157,
0.00006437877343232213, 0.20259861495261233,
0.00006758604063277815, 0.20078946886426585,
0.00006936639909688728, 0.19950946540114126,
0.00007060462559901383, 0.19419568100982915,
0.00007203099599317158, 0.19315789072022155,
0.000070702457797849, 0.1915089779620479,
0.00006848623690747524, 0.1877043679595727,
0.0000655582201752986, 0.18552631257617724,
0.00006502581900288756, 0.18319547657564023,
0.00006473633752977752, 0.18022929678918553,
0.0000647164208590649, 0.1778947344321329,
0.00006579061639282816, 0.1759588922222545,
0.00006688264196152569, 0.17169966672487036,
0.000069698027991677, 0.17026315628808858,
0.00007074598227692727, 0.16915083886816806,
0.0000715890703672052, 0.1628570227132409,
0.00007702856693563057, 0.16263157814404428,
0.0000772540665362398, 0.16246575527909798,
0.00007740873598046131, 0.16137952235478703,
0.00007847597621237087, 0.1559371786636851,
0.00008479024550498915, 0.15499999999999997,
0.00008598570939586575, 0.15363429033701548,
0.0000878443636223182, 0.14952784545677286,
0.00009379466248802923, 0.14736842185595564,
0.00009723293672220618, 0.14409481765696008,
0.00010283357787557963, 0.14320049209320487,
0.00010446007275761177, 0.1397368437119113,
0.00011114188215085727, 0.13695884492949673,
0.00011716452189394137, 0.1342348783165591,
0.0001236085720280136, 0.132105265567867,
0.00012901013630317747, 0.13081408303519548,
0.00013246966302280202, 0.1257555540652051,
0.00014737401267806525, 0.12474012191469142,
0.00015065231188607817, 0.12447368742382268,
0.00015155898228429117, 0.12401348239414031,
0.00015308224162798693, 0.11874814063753161,
0.00017249445411395565, 0.11684210927977837,
0.0001805037702493432, 0.11336355547242224,
0.00019641246454919555, 0.11284559191674734,
0.0001989673011140506, 0.10921053113573405,
0.00021817518248477453, 0.10702874939582294,
0.0002311329610459566, 0.10215840142987279,
0.00026383042098478994, 0.10157895299168973,
0.0002681270934084663, 0.10129388671824277,
0.00027032239338430433, 0.10047595146305832,
0.00027676112692193297, 0.09562982481445986,
0.0003180103296691775, 0.09394737484764541,
0.0003344186780080345, 0.09030113499708517,
0.00037399586047134474, 0.09005519546705248,
0.0003768839705616018, 0.08986328810649669,
0.000379268855541332, 0.0863157967036011,
0.0004251992889145789, 0.08458490410208322,
0.00045052187423797835, 0.08046541697403586,
0.0005197437457472359, 0.07922640343258337,
0.0005435420441421504, 0.07868421855955678,
0.0005546081232062334, 0.0772551608358063,
0.0005848415758826891, 0.07400205159764678,
0.0006630728705670156, 0.07105264041551246,
0.0007465819667652495, 0.06890066952772653,
0.0008171453719603333, 0.0648482568169608,
0.000976053119336969, 0.0639297099358539,
0.0010179222593113134, 0.06342106227146814,
0.0010421678651143407, 0.061574652617965235,
0.0011368142898518605, 0.059100351891575864,
0.0012829449507075384, 0.05827869027987578,
0.0013375669973438838, 0.05578948412742382,
0.0015218623255611656, 0.054423774464439335,
0.0016374968051687928, 0.052420857837279254,
0.0018329796165180577, 0.04990743036747559,
0.0021178695173944147, 0.048157905983379504,
0.002355429130050617, 0.045558772313715974,
0.0027773557142080525, 0.04240441152322109,
0.003442245312276653, 0.04138897937270737,
0.0036963942496618823, 0.04052632783933518,
0.003935255900947914, 0.037409230613996765,
0.004997357778414752, 0.034321944240783525,
0.006464366915546581, 0.03363443146364672,
0.006871515294551954, 0.032894749695290854,
0.007340357190916253, 0.03006458192165723,
0.00960980353019457, 0.029078960623268695,
0.010620521351798435, 0.027826904834011422,
0.012139762227223483, 0.02671831377060655,
0.013689720812215192, 0.025263171551246535,
0.016196681390274872, 0.023599353367010308,
0.01987130548360278, 0.022580194859980952,
0.022797874696606883, 0.020711427067384165,
0.029399745399044594, 0.018960039505030245,
0.038365222254596924, 0.018287432153956024,
0.04281328422698936, 0.018065713941275055,
0.04437588266801011, 0.017631593407202217,
0.04774766079357238, 0.01649878102644564,
0.0586706142272511, 0.015658487632167324,
0.06831295475610606, 0.014859184159561115,
0.08040123611056546, 0.013815804335180057,
0.09971036507907274, 0.01348602178354533,
0.1072205750222915, 0.013113386131980664,
0.11676024205927839, 0.012086774911920015,
0.15098955580781592, 0.010000015263157896,
0.2660533148660376, 0.010000015263157896,
0.2835509385911756, 0.010000015263157896,
0.9999987396384276, 0.025263171551246535,
0.9999987396384276, 0.04052632783933518,
0.9999987396384276, 0.05578948412742382,
0.9999987396384276, 0.07105264041551246,
0.9999987396384276, 0.0863157967036011,
0.9999987396384276, 0.10157895299168973,
0.9999987396384276, 0.11684210927977837,
0.9999987396384276, 0.132105265567867,
0.9999987396384276, 0.14736842185595564,
0.9999987396384276, 0.16263157814404428,
0.9999987396384276, 0.1778947344321329,
0.9999987396384276, 0.19315789072022155,
0.9999987396384276, 0.20842104700831018,
0.9999987396384276, 0.22368420329639882,
0.9999987396384276, 0.23894735958448746,
0.9999987396384276, 0.2542105158725761,
0.9999987396384276, 0.2558203018873354,
0.9999987396384276, 0.260569543266527,
0.9002500410979579, 0.2618420940166204,
0.8757957440659601, 0.2640238757565315,
0.8351341545160378, 0.26662114624793726,
0.7901362222306625, 0.26947367216066476,
0.7443493438629281, 0.27036799772442,
0.7297218689571064, 0.2727174655075352,
0.6960563689327807, 0.27423036625288777,
0.6751722139909367, 0.2771052503047091,
0.6371246250347038, 0.27885850104532084,
0.6154467319250959, 0.2842505389234616,
0.5543124325647013, 0.2847368284487534,
0.5493035315917327, 0.2850405265047786,
0.5460174363420693, 0.2863466144635127,
0.532494677170081, 0.28855261752077555,
0.5110636800160765, 0.29126354188590853,
0.48606297039886726, 0.2923684065927977,
0.4762180131823315, 0.29410675190734686,
0.4612906069497988, 0.29751636811916365,
0.43375814254337697, 0.2999999847368421,
0.41514964772736146, 0.2999999847368421,
0.2835509385911756, 0.2999999847368421,
0.08040123611056546, 0.2999999847368421,
0.022797874696606883, 0.2999999847368421,
0.006464366915546581, 0.2999999847368421,
0.0018329796165180577, 0.2999999847368421,
0.0005197437457472359, 0.2999999847368421,
0.00014737401267806525, 0.2999999847368421,
0.00007847597621237087;

data2=0.026421, 0.880102, 0.0268178, 0.746742, 0.0271942,
0.634472, 0.0276739, 0.536112, 0.0280312, 0.47488, 0.0287076,
0.346523, 0.0291455, 0.296601, 0.0295175, 0.253896, 0.0300024,
0.215648, 0.030506, 0.181238, 0.0312802, 0.139177, 0.0319591,
0.119716, 0.0325865, 0.103702, 0.0332548,
0.0900265, 0.0339655, 0.0776198, 0.0344885,
0.0720466, 0.0357332, 0.0539909, 0.0364653,
0.0463016, 0.0372134, 0.0403451, 0.0379443,
0.035113, 0.0387223, 0.0304162, 0.0394182,
0.0275844, 0.0409623, 0.0203708, 0.0420865,
0.0178988, 0.0437596, 0.0155134, 0.0453807,
0.013276, 0.047063, 0.0115048, 0.0485016,
0.0112719, 0.0506136, 0.00833023, 0.0529264,
0.00747158, 0.0559817, 0.00688619, 0.0591538,
0.00619242, 0.0645948, 0.0056801, 0.0626333,
0.00566467, 0.0697434, 0.00456699, 0.0736612,
0.00417951, 0.0772273, 0.00379961, 0.0812595,
0.00349659, 0.0856752, 0.00315671, 0.0889625,
0.00310055, 0.0968806, 0.00250791, 0.102129,
0.00231113, 0.108357, 0.00218765, 0.114647,
0.00207634, 0.121303, 0.0019672, 0.126388,
0.0019222, 0.140037, 0.00170103, 0.148169,
0.00162699, 0.156771, 0.0015433, 0.165872,
0.00146304, 0.175501, 0.00138861, 0.183798,
0.00134368, 0.204696, 0.00118797, 0.216582,
0.00113424, 0.229153, 0.00107144, 0.242455,
0.00101211, 0.256528, 0.000956066, 0.267965,
0.000925368, 0.299199, 0.000814051, 0.316558,
0.000758552, 0.334914, 0.000694366, 0.354334,
0.000635234, 0.374881, 0.000582519, 0.387607,
0.000576501, 0.420909, 0.000451888, 0.441583,
0.000398565, 0.464751, 0.000346267, 0.489135,
0.000301422, 0.509853, 0.000278623, 0.545726,
0.000211186, 0.569648, 0.000185061, 0.593935,
0.000159681, 0.61827, 0.000137351, 0.637911,
0.000119888, 0.67462, 0.0000870067, 0.698866,
0.0000749829, 0.720831, 0.0000640726, 0.739399,
0.0000554034, 0.762664, 0.0000482517, 0.805269,
0.0000347985, 0.825927, 0.0000300192, 0.838617,
0.0000258637, 0.860889, 0.0000222026, 0.879836,
0.0000189785, 0.886325, 0.0000177987, 0.919887,
0.0000133371, 0.93044, 0.0000114575, 0.94442,
9.76004*10^-6, 0.960141, 8.29786*10^-6, 0.977934,
6.98367*10^-6, 0.967144, 6.4857*10^-6, 1.00723,
4.91017*10^-6, 1.01476, 4.25439*10^-6, 1.02665,
3.66046*10^-6, 1.03528, 3.15301*10^-6, 1.04571,
2.73125*10^-6, 1.05629, 2.43485*10^-6, 1.07346,
1.75992*10^-6, 1.08666, 1.50936*10^-6, 1.09757,
1.28898*10^-6, 1.10808, 1.10339*10^-6, 1.10932,
9.40047*10^-7, 1.11468, 8.59312*10^-7, 1.12268,
6.29552*10^-7, 1.13343, 5.25539*10^-7, 1.14154,
4.38902*10^-7, 1.15344, 3.62605*10^-7, 1.17927,
3.16306*10^-7, 1.20399, 2.032*10^-7, 1.19695,
2.42533*10^-7, 1.21411, 2.94621*10^-7, 1.22229,
4.40625*10^-7, 1.22096, 5.31288*10^-7, 1.22468,
7.08256*10^-7, 1.22694, 8.76305*10^-7, 1.20904,
1.30488*10^-6, 1.20948, 1.60216*10^-6, 1.20979,
1.84956*10^-6, 1.2101, 2.13517*10^-6, 1.21041,
2.46487*10^-6, 1.21114, 3.4547*10^-6, 1.21155,
4.16101*10^-6, 1.21186, 4.80354*10^-6, 1.21217,
5.5453*10^-6, 1.20669, 6.84148*10^-6, 1.20692,
8.6485*10^-6, 1.20884, 0.0000106246, 1.21093,
0.0000131545, 1.21286, 0.0000162406, 1.21186,
0.0000202058, 1.21529, 0.0000233107, 1.20996,
0.0000272315, 1.21282, 0.0000314739, 1.21313,
0.000036334, 1.21344, 0.0000419446, 1.21537,
0.0000515103, 1.21748, 0.0000636935, 1.21779,
0.0000735289, 1.2124, 0.0000840811, 1.21529,
0.0000981186, 1.2156, 0.00011327, 1.21592,
0.000130761, 1.21786, 0.000161477, 1.21998,
0.000200909, 1.2146, 0.000230834, 1.21748,
0.000268798, 1.2178, 0.000310305, 1.21811,
0.000358222, 1.22005, 0.000441824, 1.22218,
0.000548959, 1.21679, 0.000633728, 1.21968,
0.000736378, 1.21999, 0.000850087, 1.22031,
0.000981356, 1.22225, 0.00120889, 1.22438,
0.00149996, 1.21899, 0.00173982, 1.22188, 0.00201732, 1.2222,
0.00232883, 1.22251, 0.00268845, 1.22445, 0.00330769, 1.22658,
0.00409847, 1.2212, 0.00477648, 1.22409, 0.0055265, 1.2244,
0.00637989, 1.22472, 0.00736505, 1.22666, 0.00905029, 1.22879,
0.0111986, 1.2291, 0.0129278, 1.22366, 0.014748, 1.22658,
0.0172287, 1.2269, 0.0198891, 1.22721, 0.0229603, 1.23332,
0.0265346, 1.231, 0.0305987, 1.23132, 0.0353237, 1.22588,
0.040489, 1.22879, 0.0471983, 1.22911, 0.0544865, 1.22943,
0.0629002, 1.23139, 0.077628, 1.23353, 0.0965177, 1.22809,
0.111158, 1.23101, 0.129301, 1.23133, 0.149267, 1.23164,
0.172316, 1.23361, 0.212401, 1.23575, 0.263723, 1.23032,
0.30517, 1.23323, 0.354222, 1.23355, 0.40892, 1.23387,
0.472065, 1.23583, 0.581157, 1.23798, 0.720591, 1.23251,
0.82596, 0.026421, 0.880102;









share|improve this question



















  • 1




    That's really the way two translucent objects interact: stack a number of them and the color will darken. This is mentioned in the docs for Opacity.
    – J. M. is computer-less♦
    3 hours ago












up vote
2
down vote

favorite









up vote
2
down vote

favorite











Consider two sets of data, data1 and data2 (they are given below). If I try to plot them,



ListLogPlot[data1, data2, 
PlotStyle -> Blue, Blue, Joined -> True, Filling -> Automatic]


I will obtain something like this: enter image description here



Is there any way to plot them in a way such that the area of their intersection will be the same color as the areas where they are not intersected? Likely without arbitrary opacity.



data1=0.2999999847368421, 0.00007847597621237087, 0.2999999847368421, 
0.000041788092286919155, 0.2999999847368421,
0.000022251964757397896, 0.2999999847368421,
0.0000220678601151695, 0.2999086890022088,
0.00002208484265800435, 0.299135470025212,
0.000022251964757397896, 0.29305964572645016,
0.000023559042135848565, 0.2923684065927977,
0.000023715417699775446, 0.29149457598987855,
0.00002391694676035076, 0.28622923423326985,
0.000025170342352025765, 0.2847368284487534,
0.000025544864044561507, 0.28283824980403144,
0.00002602887044236093, 0.27941745452266786,
0.00002693325175144503, 0.2771052503047091,
0.000027574767347538766, 0.27414093369651227,
0.00002842332559813959, 0.27262803295115967,
0.00002887289075546239, 0.26947367216066476,
0.000029839338905920736, 0.2674167233640278,
0.000030493723236879715, 0.26585724316222964,
0.00003099987331245628, 0.2653989013108051,
0.00003115287099495151, 0.2618420940166204,
0.00003235951331170112, 0.25910881151239357,
0.000033345050500262494, 0.2566121526469104,
0.00003427085042641089, 0.2542105158725761,
0.000035200684917703386, 0.2523827380016514,
0.000035933924343589724, 0.24776950863528088,
0.00003787531113975004, 0.2465789377285318,
0.000038403409002727274, 0.24567902263000313,
0.000038795354781778083, 0.2427631486565096,
0.00004014331161385088, 0.23939452236636505,
0.000041788092286919155, 0.23900139175396434,
0.000041974956094407755, 0.23894735958448746,
0.00004200725834238921, 0.23887469563243233,
0.00004203958544888939, 0.2323498453735351,
0.000045513079034589037, 0.23131578144044312,
0.000046097997889804963, 0.22991280821230217,
0.000046920871261138605, 0.22572438348871537,
0.00004945584514987175, 0.22368420329639882,
0.00005077423724654412, 0.22088757273140602,
0.00005264359063778916, 0.21912873245602082,
0.000053872622507582905, 0.21605262515235452,
0.000056131722625208974, 0.21256289227545141,
0.00005882848791880944, 0.21178408376368124,
0.00005944718178346996, 0.20842104700831018,
0.00006224574676266308, 0.20602313659049157,
0.00006437877343232213, 0.20259861495261233,
0.00006758604063277815, 0.20078946886426585,
0.00006936639909688728, 0.19950946540114126,
0.00007060462559901383, 0.19419568100982915,
0.00007203099599317158, 0.19315789072022155,
0.000070702457797849, 0.1915089779620479,
0.00006848623690747524, 0.1877043679595727,
0.0000655582201752986, 0.18552631257617724,
0.00006502581900288756, 0.18319547657564023,
0.00006473633752977752, 0.18022929678918553,
0.0000647164208590649, 0.1778947344321329,
0.00006579061639282816, 0.1759588922222545,
0.00006688264196152569, 0.17169966672487036,
0.000069698027991677, 0.17026315628808858,
0.00007074598227692727, 0.16915083886816806,
0.0000715890703672052, 0.1628570227132409,
0.00007702856693563057, 0.16263157814404428,
0.0000772540665362398, 0.16246575527909798,
0.00007740873598046131, 0.16137952235478703,
0.00007847597621237087, 0.1559371786636851,
0.00008479024550498915, 0.15499999999999997,
0.00008598570939586575, 0.15363429033701548,
0.0000878443636223182, 0.14952784545677286,
0.00009379466248802923, 0.14736842185595564,
0.00009723293672220618, 0.14409481765696008,
0.00010283357787557963, 0.14320049209320487,
0.00010446007275761177, 0.1397368437119113,
0.00011114188215085727, 0.13695884492949673,
0.00011716452189394137, 0.1342348783165591,
0.0001236085720280136, 0.132105265567867,
0.00012901013630317747, 0.13081408303519548,
0.00013246966302280202, 0.1257555540652051,
0.00014737401267806525, 0.12474012191469142,
0.00015065231188607817, 0.12447368742382268,
0.00015155898228429117, 0.12401348239414031,
0.00015308224162798693, 0.11874814063753161,
0.00017249445411395565, 0.11684210927977837,
0.0001805037702493432, 0.11336355547242224,
0.00019641246454919555, 0.11284559191674734,
0.0001989673011140506, 0.10921053113573405,
0.00021817518248477453, 0.10702874939582294,
0.0002311329610459566, 0.10215840142987279,
0.00026383042098478994, 0.10157895299168973,
0.0002681270934084663, 0.10129388671824277,
0.00027032239338430433, 0.10047595146305832,
0.00027676112692193297, 0.09562982481445986,
0.0003180103296691775, 0.09394737484764541,
0.0003344186780080345, 0.09030113499708517,
0.00037399586047134474, 0.09005519546705248,
0.0003768839705616018, 0.08986328810649669,
0.000379268855541332, 0.0863157967036011,
0.0004251992889145789, 0.08458490410208322,
0.00045052187423797835, 0.08046541697403586,
0.0005197437457472359, 0.07922640343258337,
0.0005435420441421504, 0.07868421855955678,
0.0005546081232062334, 0.0772551608358063,
0.0005848415758826891, 0.07400205159764678,
0.0006630728705670156, 0.07105264041551246,
0.0007465819667652495, 0.06890066952772653,
0.0008171453719603333, 0.0648482568169608,
0.000976053119336969, 0.0639297099358539,
0.0010179222593113134, 0.06342106227146814,
0.0010421678651143407, 0.061574652617965235,
0.0011368142898518605, 0.059100351891575864,
0.0012829449507075384, 0.05827869027987578,
0.0013375669973438838, 0.05578948412742382,
0.0015218623255611656, 0.054423774464439335,
0.0016374968051687928, 0.052420857837279254,
0.0018329796165180577, 0.04990743036747559,
0.0021178695173944147, 0.048157905983379504,
0.002355429130050617, 0.045558772313715974,
0.0027773557142080525, 0.04240441152322109,
0.003442245312276653, 0.04138897937270737,
0.0036963942496618823, 0.04052632783933518,
0.003935255900947914, 0.037409230613996765,
0.004997357778414752, 0.034321944240783525,
0.006464366915546581, 0.03363443146364672,
0.006871515294551954, 0.032894749695290854,
0.007340357190916253, 0.03006458192165723,
0.00960980353019457, 0.029078960623268695,
0.010620521351798435, 0.027826904834011422,
0.012139762227223483, 0.02671831377060655,
0.013689720812215192, 0.025263171551246535,
0.016196681390274872, 0.023599353367010308,
0.01987130548360278, 0.022580194859980952,
0.022797874696606883, 0.020711427067384165,
0.029399745399044594, 0.018960039505030245,
0.038365222254596924, 0.018287432153956024,
0.04281328422698936, 0.018065713941275055,
0.04437588266801011, 0.017631593407202217,
0.04774766079357238, 0.01649878102644564,
0.0586706142272511, 0.015658487632167324,
0.06831295475610606, 0.014859184159561115,
0.08040123611056546, 0.013815804335180057,
0.09971036507907274, 0.01348602178354533,
0.1072205750222915, 0.013113386131980664,
0.11676024205927839, 0.012086774911920015,
0.15098955580781592, 0.010000015263157896,
0.2660533148660376, 0.010000015263157896,
0.2835509385911756, 0.010000015263157896,
0.9999987396384276, 0.025263171551246535,
0.9999987396384276, 0.04052632783933518,
0.9999987396384276, 0.05578948412742382,
0.9999987396384276, 0.07105264041551246,
0.9999987396384276, 0.0863157967036011,
0.9999987396384276, 0.10157895299168973,
0.9999987396384276, 0.11684210927977837,
0.9999987396384276, 0.132105265567867,
0.9999987396384276, 0.14736842185595564,
0.9999987396384276, 0.16263157814404428,
0.9999987396384276, 0.1778947344321329,
0.9999987396384276, 0.19315789072022155,
0.9999987396384276, 0.20842104700831018,
0.9999987396384276, 0.22368420329639882,
0.9999987396384276, 0.23894735958448746,
0.9999987396384276, 0.2542105158725761,
0.9999987396384276, 0.2558203018873354,
0.9999987396384276, 0.260569543266527,
0.9002500410979579, 0.2618420940166204,
0.8757957440659601, 0.2640238757565315,
0.8351341545160378, 0.26662114624793726,
0.7901362222306625, 0.26947367216066476,
0.7443493438629281, 0.27036799772442,
0.7297218689571064, 0.2727174655075352,
0.6960563689327807, 0.27423036625288777,
0.6751722139909367, 0.2771052503047091,
0.6371246250347038, 0.27885850104532084,
0.6154467319250959, 0.2842505389234616,
0.5543124325647013, 0.2847368284487534,
0.5493035315917327, 0.2850405265047786,
0.5460174363420693, 0.2863466144635127,
0.532494677170081, 0.28855261752077555,
0.5110636800160765, 0.29126354188590853,
0.48606297039886726, 0.2923684065927977,
0.4762180131823315, 0.29410675190734686,
0.4612906069497988, 0.29751636811916365,
0.43375814254337697, 0.2999999847368421,
0.41514964772736146, 0.2999999847368421,
0.2835509385911756, 0.2999999847368421,
0.08040123611056546, 0.2999999847368421,
0.022797874696606883, 0.2999999847368421,
0.006464366915546581, 0.2999999847368421,
0.0018329796165180577, 0.2999999847368421,
0.0005197437457472359, 0.2999999847368421,
0.00014737401267806525, 0.2999999847368421,
0.00007847597621237087;

data2=0.026421, 0.880102, 0.0268178, 0.746742, 0.0271942,
0.634472, 0.0276739, 0.536112, 0.0280312, 0.47488, 0.0287076,
0.346523, 0.0291455, 0.296601, 0.0295175, 0.253896, 0.0300024,
0.215648, 0.030506, 0.181238, 0.0312802, 0.139177, 0.0319591,
0.119716, 0.0325865, 0.103702, 0.0332548,
0.0900265, 0.0339655, 0.0776198, 0.0344885,
0.0720466, 0.0357332, 0.0539909, 0.0364653,
0.0463016, 0.0372134, 0.0403451, 0.0379443,
0.035113, 0.0387223, 0.0304162, 0.0394182,
0.0275844, 0.0409623, 0.0203708, 0.0420865,
0.0178988, 0.0437596, 0.0155134, 0.0453807,
0.013276, 0.047063, 0.0115048, 0.0485016,
0.0112719, 0.0506136, 0.00833023, 0.0529264,
0.00747158, 0.0559817, 0.00688619, 0.0591538,
0.00619242, 0.0645948, 0.0056801, 0.0626333,
0.00566467, 0.0697434, 0.00456699, 0.0736612,
0.00417951, 0.0772273, 0.00379961, 0.0812595,
0.00349659, 0.0856752, 0.00315671, 0.0889625,
0.00310055, 0.0968806, 0.00250791, 0.102129,
0.00231113, 0.108357, 0.00218765, 0.114647,
0.00207634, 0.121303, 0.0019672, 0.126388,
0.0019222, 0.140037, 0.00170103, 0.148169,
0.00162699, 0.156771, 0.0015433, 0.165872,
0.00146304, 0.175501, 0.00138861, 0.183798,
0.00134368, 0.204696, 0.00118797, 0.216582,
0.00113424, 0.229153, 0.00107144, 0.242455,
0.00101211, 0.256528, 0.000956066, 0.267965,
0.000925368, 0.299199, 0.000814051, 0.316558,
0.000758552, 0.334914, 0.000694366, 0.354334,
0.000635234, 0.374881, 0.000582519, 0.387607,
0.000576501, 0.420909, 0.000451888, 0.441583,
0.000398565, 0.464751, 0.000346267, 0.489135,
0.000301422, 0.509853, 0.000278623, 0.545726,
0.000211186, 0.569648, 0.000185061, 0.593935,
0.000159681, 0.61827, 0.000137351, 0.637911,
0.000119888, 0.67462, 0.0000870067, 0.698866,
0.0000749829, 0.720831, 0.0000640726, 0.739399,
0.0000554034, 0.762664, 0.0000482517, 0.805269,
0.0000347985, 0.825927, 0.0000300192, 0.838617,
0.0000258637, 0.860889, 0.0000222026, 0.879836,
0.0000189785, 0.886325, 0.0000177987, 0.919887,
0.0000133371, 0.93044, 0.0000114575, 0.94442,
9.76004*10^-6, 0.960141, 8.29786*10^-6, 0.977934,
6.98367*10^-6, 0.967144, 6.4857*10^-6, 1.00723,
4.91017*10^-6, 1.01476, 4.25439*10^-6, 1.02665,
3.66046*10^-6, 1.03528, 3.15301*10^-6, 1.04571,
2.73125*10^-6, 1.05629, 2.43485*10^-6, 1.07346,
1.75992*10^-6, 1.08666, 1.50936*10^-6, 1.09757,
1.28898*10^-6, 1.10808, 1.10339*10^-6, 1.10932,
9.40047*10^-7, 1.11468, 8.59312*10^-7, 1.12268,
6.29552*10^-7, 1.13343, 5.25539*10^-7, 1.14154,
4.38902*10^-7, 1.15344, 3.62605*10^-7, 1.17927,
3.16306*10^-7, 1.20399, 2.032*10^-7, 1.19695,
2.42533*10^-7, 1.21411, 2.94621*10^-7, 1.22229,
4.40625*10^-7, 1.22096, 5.31288*10^-7, 1.22468,
7.08256*10^-7, 1.22694, 8.76305*10^-7, 1.20904,
1.30488*10^-6, 1.20948, 1.60216*10^-6, 1.20979,
1.84956*10^-6, 1.2101, 2.13517*10^-6, 1.21041,
2.46487*10^-6, 1.21114, 3.4547*10^-6, 1.21155,
4.16101*10^-6, 1.21186, 4.80354*10^-6, 1.21217,
5.5453*10^-6, 1.20669, 6.84148*10^-6, 1.20692,
8.6485*10^-6, 1.20884, 0.0000106246, 1.21093,
0.0000131545, 1.21286, 0.0000162406, 1.21186,
0.0000202058, 1.21529, 0.0000233107, 1.20996,
0.0000272315, 1.21282, 0.0000314739, 1.21313,
0.000036334, 1.21344, 0.0000419446, 1.21537,
0.0000515103, 1.21748, 0.0000636935, 1.21779,
0.0000735289, 1.2124, 0.0000840811, 1.21529,
0.0000981186, 1.2156, 0.00011327, 1.21592,
0.000130761, 1.21786, 0.000161477, 1.21998,
0.000200909, 1.2146, 0.000230834, 1.21748,
0.000268798, 1.2178, 0.000310305, 1.21811,
0.000358222, 1.22005, 0.000441824, 1.22218,
0.000548959, 1.21679, 0.000633728, 1.21968,
0.000736378, 1.21999, 0.000850087, 1.22031,
0.000981356, 1.22225, 0.00120889, 1.22438,
0.00149996, 1.21899, 0.00173982, 1.22188, 0.00201732, 1.2222,
0.00232883, 1.22251, 0.00268845, 1.22445, 0.00330769, 1.22658,
0.00409847, 1.2212, 0.00477648, 1.22409, 0.0055265, 1.2244,
0.00637989, 1.22472, 0.00736505, 1.22666, 0.00905029, 1.22879,
0.0111986, 1.2291, 0.0129278, 1.22366, 0.014748, 1.22658,
0.0172287, 1.2269, 0.0198891, 1.22721, 0.0229603, 1.23332,
0.0265346, 1.231, 0.0305987, 1.23132, 0.0353237, 1.22588,
0.040489, 1.22879, 0.0471983, 1.22911, 0.0544865, 1.22943,
0.0629002, 1.23139, 0.077628, 1.23353, 0.0965177, 1.22809,
0.111158, 1.23101, 0.129301, 1.23133, 0.149267, 1.23164,
0.172316, 1.23361, 0.212401, 1.23575, 0.263723, 1.23032,
0.30517, 1.23323, 0.354222, 1.23355, 0.40892, 1.23387,
0.472065, 1.23583, 0.581157, 1.23798, 0.720591, 1.23251,
0.82596, 0.026421, 0.880102;









share|improve this question















Consider two sets of data, data1 and data2 (they are given below). If I try to plot them,



ListLogPlot[data1, data2, 
PlotStyle -> Blue, Blue, Joined -> True, Filling -> Automatic]


I will obtain something like this: enter image description here



Is there any way to plot them in a way such that the area of their intersection will be the same color as the areas where they are not intersected? Likely without arbitrary opacity.



data1=0.2999999847368421, 0.00007847597621237087, 0.2999999847368421, 
0.000041788092286919155, 0.2999999847368421,
0.000022251964757397896, 0.2999999847368421,
0.0000220678601151695, 0.2999086890022088,
0.00002208484265800435, 0.299135470025212,
0.000022251964757397896, 0.29305964572645016,
0.000023559042135848565, 0.2923684065927977,
0.000023715417699775446, 0.29149457598987855,
0.00002391694676035076, 0.28622923423326985,
0.000025170342352025765, 0.2847368284487534,
0.000025544864044561507, 0.28283824980403144,
0.00002602887044236093, 0.27941745452266786,
0.00002693325175144503, 0.2771052503047091,
0.000027574767347538766, 0.27414093369651227,
0.00002842332559813959, 0.27262803295115967,
0.00002887289075546239, 0.26947367216066476,
0.000029839338905920736, 0.2674167233640278,
0.000030493723236879715, 0.26585724316222964,
0.00003099987331245628, 0.2653989013108051,
0.00003115287099495151, 0.2618420940166204,
0.00003235951331170112, 0.25910881151239357,
0.000033345050500262494, 0.2566121526469104,
0.00003427085042641089, 0.2542105158725761,
0.000035200684917703386, 0.2523827380016514,
0.000035933924343589724, 0.24776950863528088,
0.00003787531113975004, 0.2465789377285318,
0.000038403409002727274, 0.24567902263000313,
0.000038795354781778083, 0.2427631486565096,
0.00004014331161385088, 0.23939452236636505,
0.000041788092286919155, 0.23900139175396434,
0.000041974956094407755, 0.23894735958448746,
0.00004200725834238921, 0.23887469563243233,
0.00004203958544888939, 0.2323498453735351,
0.000045513079034589037, 0.23131578144044312,
0.000046097997889804963, 0.22991280821230217,
0.000046920871261138605, 0.22572438348871537,
0.00004945584514987175, 0.22368420329639882,
0.00005077423724654412, 0.22088757273140602,
0.00005264359063778916, 0.21912873245602082,
0.000053872622507582905, 0.21605262515235452,
0.000056131722625208974, 0.21256289227545141,
0.00005882848791880944, 0.21178408376368124,
0.00005944718178346996, 0.20842104700831018,
0.00006224574676266308, 0.20602313659049157,
0.00006437877343232213, 0.20259861495261233,
0.00006758604063277815, 0.20078946886426585,
0.00006936639909688728, 0.19950946540114126,
0.00007060462559901383, 0.19419568100982915,
0.00007203099599317158, 0.19315789072022155,
0.000070702457797849, 0.1915089779620479,
0.00006848623690747524, 0.1877043679595727,
0.0000655582201752986, 0.18552631257617724,
0.00006502581900288756, 0.18319547657564023,
0.00006473633752977752, 0.18022929678918553,
0.0000647164208590649, 0.1778947344321329,
0.00006579061639282816, 0.1759588922222545,
0.00006688264196152569, 0.17169966672487036,
0.000069698027991677, 0.17026315628808858,
0.00007074598227692727, 0.16915083886816806,
0.0000715890703672052, 0.1628570227132409,
0.00007702856693563057, 0.16263157814404428,
0.0000772540665362398, 0.16246575527909798,
0.00007740873598046131, 0.16137952235478703,
0.00007847597621237087, 0.1559371786636851,
0.00008479024550498915, 0.15499999999999997,
0.00008598570939586575, 0.15363429033701548,
0.0000878443636223182, 0.14952784545677286,
0.00009379466248802923, 0.14736842185595564,
0.00009723293672220618, 0.14409481765696008,
0.00010283357787557963, 0.14320049209320487,
0.00010446007275761177, 0.1397368437119113,
0.00011114188215085727, 0.13695884492949673,
0.00011716452189394137, 0.1342348783165591,
0.0001236085720280136, 0.132105265567867,
0.00012901013630317747, 0.13081408303519548,
0.00013246966302280202, 0.1257555540652051,
0.00014737401267806525, 0.12474012191469142,
0.00015065231188607817, 0.12447368742382268,
0.00015155898228429117, 0.12401348239414031,
0.00015308224162798693, 0.11874814063753161,
0.00017249445411395565, 0.11684210927977837,
0.0001805037702493432, 0.11336355547242224,
0.00019641246454919555, 0.11284559191674734,
0.0001989673011140506, 0.10921053113573405,
0.00021817518248477453, 0.10702874939582294,
0.0002311329610459566, 0.10215840142987279,
0.00026383042098478994, 0.10157895299168973,
0.0002681270934084663, 0.10129388671824277,
0.00027032239338430433, 0.10047595146305832,
0.00027676112692193297, 0.09562982481445986,
0.0003180103296691775, 0.09394737484764541,
0.0003344186780080345, 0.09030113499708517,
0.00037399586047134474, 0.09005519546705248,
0.0003768839705616018, 0.08986328810649669,
0.000379268855541332, 0.0863157967036011,
0.0004251992889145789, 0.08458490410208322,
0.00045052187423797835, 0.08046541697403586,
0.0005197437457472359, 0.07922640343258337,
0.0005435420441421504, 0.07868421855955678,
0.0005546081232062334, 0.0772551608358063,
0.0005848415758826891, 0.07400205159764678,
0.0006630728705670156, 0.07105264041551246,
0.0007465819667652495, 0.06890066952772653,
0.0008171453719603333, 0.0648482568169608,
0.000976053119336969, 0.0639297099358539,
0.0010179222593113134, 0.06342106227146814,
0.0010421678651143407, 0.061574652617965235,
0.0011368142898518605, 0.059100351891575864,
0.0012829449507075384, 0.05827869027987578,
0.0013375669973438838, 0.05578948412742382,
0.0015218623255611656, 0.054423774464439335,
0.0016374968051687928, 0.052420857837279254,
0.0018329796165180577, 0.04990743036747559,
0.0021178695173944147, 0.048157905983379504,
0.002355429130050617, 0.045558772313715974,
0.0027773557142080525, 0.04240441152322109,
0.003442245312276653, 0.04138897937270737,
0.0036963942496618823, 0.04052632783933518,
0.003935255900947914, 0.037409230613996765,
0.004997357778414752, 0.034321944240783525,
0.006464366915546581, 0.03363443146364672,
0.006871515294551954, 0.032894749695290854,
0.007340357190916253, 0.03006458192165723,
0.00960980353019457, 0.029078960623268695,
0.010620521351798435, 0.027826904834011422,
0.012139762227223483, 0.02671831377060655,
0.013689720812215192, 0.025263171551246535,
0.016196681390274872, 0.023599353367010308,
0.01987130548360278, 0.022580194859980952,
0.022797874696606883, 0.020711427067384165,
0.029399745399044594, 0.018960039505030245,
0.038365222254596924, 0.018287432153956024,
0.04281328422698936, 0.018065713941275055,
0.04437588266801011, 0.017631593407202217,
0.04774766079357238, 0.01649878102644564,
0.0586706142272511, 0.015658487632167324,
0.06831295475610606, 0.014859184159561115,
0.08040123611056546, 0.013815804335180057,
0.09971036507907274, 0.01348602178354533,
0.1072205750222915, 0.013113386131980664,
0.11676024205927839, 0.012086774911920015,
0.15098955580781592, 0.010000015263157896,
0.2660533148660376, 0.010000015263157896,
0.2835509385911756, 0.010000015263157896,
0.9999987396384276, 0.025263171551246535,
0.9999987396384276, 0.04052632783933518,
0.9999987396384276, 0.05578948412742382,
0.9999987396384276, 0.07105264041551246,
0.9999987396384276, 0.0863157967036011,
0.9999987396384276, 0.10157895299168973,
0.9999987396384276, 0.11684210927977837,
0.9999987396384276, 0.132105265567867,
0.9999987396384276, 0.14736842185595564,
0.9999987396384276, 0.16263157814404428,
0.9999987396384276, 0.1778947344321329,
0.9999987396384276, 0.19315789072022155,
0.9999987396384276, 0.20842104700831018,
0.9999987396384276, 0.22368420329639882,
0.9999987396384276, 0.23894735958448746,
0.9999987396384276, 0.2542105158725761,
0.9999987396384276, 0.2558203018873354,
0.9999987396384276, 0.260569543266527,
0.9002500410979579, 0.2618420940166204,
0.8757957440659601, 0.2640238757565315,
0.8351341545160378, 0.26662114624793726,
0.7901362222306625, 0.26947367216066476,
0.7443493438629281, 0.27036799772442,
0.7297218689571064, 0.2727174655075352,
0.6960563689327807, 0.27423036625288777,
0.6751722139909367, 0.2771052503047091,
0.6371246250347038, 0.27885850104532084,
0.6154467319250959, 0.2842505389234616,
0.5543124325647013, 0.2847368284487534,
0.5493035315917327, 0.2850405265047786,
0.5460174363420693, 0.2863466144635127,
0.532494677170081, 0.28855261752077555,
0.5110636800160765, 0.29126354188590853,
0.48606297039886726, 0.2923684065927977,
0.4762180131823315, 0.29410675190734686,
0.4612906069497988, 0.29751636811916365,
0.43375814254337697, 0.2999999847368421,
0.41514964772736146, 0.2999999847368421,
0.2835509385911756, 0.2999999847368421,
0.08040123611056546, 0.2999999847368421,
0.022797874696606883, 0.2999999847368421,
0.006464366915546581, 0.2999999847368421,
0.0018329796165180577, 0.2999999847368421,
0.0005197437457472359, 0.2999999847368421,
0.00014737401267806525, 0.2999999847368421,
0.00007847597621237087;

data2=0.026421, 0.880102, 0.0268178, 0.746742, 0.0271942,
0.634472, 0.0276739, 0.536112, 0.0280312, 0.47488, 0.0287076,
0.346523, 0.0291455, 0.296601, 0.0295175, 0.253896, 0.0300024,
0.215648, 0.030506, 0.181238, 0.0312802, 0.139177, 0.0319591,
0.119716, 0.0325865, 0.103702, 0.0332548,
0.0900265, 0.0339655, 0.0776198, 0.0344885,
0.0720466, 0.0357332, 0.0539909, 0.0364653,
0.0463016, 0.0372134, 0.0403451, 0.0379443,
0.035113, 0.0387223, 0.0304162, 0.0394182,
0.0275844, 0.0409623, 0.0203708, 0.0420865,
0.0178988, 0.0437596, 0.0155134, 0.0453807,
0.013276, 0.047063, 0.0115048, 0.0485016,
0.0112719, 0.0506136, 0.00833023, 0.0529264,
0.00747158, 0.0559817, 0.00688619, 0.0591538,
0.00619242, 0.0645948, 0.0056801, 0.0626333,
0.00566467, 0.0697434, 0.00456699, 0.0736612,
0.00417951, 0.0772273, 0.00379961, 0.0812595,
0.00349659, 0.0856752, 0.00315671, 0.0889625,
0.00310055, 0.0968806, 0.00250791, 0.102129,
0.00231113, 0.108357, 0.00218765, 0.114647,
0.00207634, 0.121303, 0.0019672, 0.126388,
0.0019222, 0.140037, 0.00170103, 0.148169,
0.00162699, 0.156771, 0.0015433, 0.165872,
0.00146304, 0.175501, 0.00138861, 0.183798,
0.00134368, 0.204696, 0.00118797, 0.216582,
0.00113424, 0.229153, 0.00107144, 0.242455,
0.00101211, 0.256528, 0.000956066, 0.267965,
0.000925368, 0.299199, 0.000814051, 0.316558,
0.000758552, 0.334914, 0.000694366, 0.354334,
0.000635234, 0.374881, 0.000582519, 0.387607,
0.000576501, 0.420909, 0.000451888, 0.441583,
0.000398565, 0.464751, 0.000346267, 0.489135,
0.000301422, 0.509853, 0.000278623, 0.545726,
0.000211186, 0.569648, 0.000185061, 0.593935,
0.000159681, 0.61827, 0.000137351, 0.637911,
0.000119888, 0.67462, 0.0000870067, 0.698866,
0.0000749829, 0.720831, 0.0000640726, 0.739399,
0.0000554034, 0.762664, 0.0000482517, 0.805269,
0.0000347985, 0.825927, 0.0000300192, 0.838617,
0.0000258637, 0.860889, 0.0000222026, 0.879836,
0.0000189785, 0.886325, 0.0000177987, 0.919887,
0.0000133371, 0.93044, 0.0000114575, 0.94442,
9.76004*10^-6, 0.960141, 8.29786*10^-6, 0.977934,
6.98367*10^-6, 0.967144, 6.4857*10^-6, 1.00723,
4.91017*10^-6, 1.01476, 4.25439*10^-6, 1.02665,
3.66046*10^-6, 1.03528, 3.15301*10^-6, 1.04571,
2.73125*10^-6, 1.05629, 2.43485*10^-6, 1.07346,
1.75992*10^-6, 1.08666, 1.50936*10^-6, 1.09757,
1.28898*10^-6, 1.10808, 1.10339*10^-6, 1.10932,
9.40047*10^-7, 1.11468, 8.59312*10^-7, 1.12268,
6.29552*10^-7, 1.13343, 5.25539*10^-7, 1.14154,
4.38902*10^-7, 1.15344, 3.62605*10^-7, 1.17927,
3.16306*10^-7, 1.20399, 2.032*10^-7, 1.19695,
2.42533*10^-7, 1.21411, 2.94621*10^-7, 1.22229,
4.40625*10^-7, 1.22096, 5.31288*10^-7, 1.22468,
7.08256*10^-7, 1.22694, 8.76305*10^-7, 1.20904,
1.30488*10^-6, 1.20948, 1.60216*10^-6, 1.20979,
1.84956*10^-6, 1.2101, 2.13517*10^-6, 1.21041,
2.46487*10^-6, 1.21114, 3.4547*10^-6, 1.21155,
4.16101*10^-6, 1.21186, 4.80354*10^-6, 1.21217,
5.5453*10^-6, 1.20669, 6.84148*10^-6, 1.20692,
8.6485*10^-6, 1.20884, 0.0000106246, 1.21093,
0.0000131545, 1.21286, 0.0000162406, 1.21186,
0.0000202058, 1.21529, 0.0000233107, 1.20996,
0.0000272315, 1.21282, 0.0000314739, 1.21313,
0.000036334, 1.21344, 0.0000419446, 1.21537,
0.0000515103, 1.21748, 0.0000636935, 1.21779,
0.0000735289, 1.2124, 0.0000840811, 1.21529,
0.0000981186, 1.2156, 0.00011327, 1.21592,
0.000130761, 1.21786, 0.000161477, 1.21998,
0.000200909, 1.2146, 0.000230834, 1.21748,
0.000268798, 1.2178, 0.000310305, 1.21811,
0.000358222, 1.22005, 0.000441824, 1.22218,
0.000548959, 1.21679, 0.000633728, 1.21968,
0.000736378, 1.21999, 0.000850087, 1.22031,
0.000981356, 1.22225, 0.00120889, 1.22438,
0.00149996, 1.21899, 0.00173982, 1.22188, 0.00201732, 1.2222,
0.00232883, 1.22251, 0.00268845, 1.22445, 0.00330769, 1.22658,
0.00409847, 1.2212, 0.00477648, 1.22409, 0.0055265, 1.2244,
0.00637989, 1.22472, 0.00736505, 1.22666, 0.00905029, 1.22879,
0.0111986, 1.2291, 0.0129278, 1.22366, 0.014748, 1.22658,
0.0172287, 1.2269, 0.0198891, 1.22721, 0.0229603, 1.23332,
0.0265346, 1.231, 0.0305987, 1.23132, 0.0353237, 1.22588,
0.040489, 1.22879, 0.0471983, 1.22911, 0.0544865, 1.22943,
0.0629002, 1.23139, 0.077628, 1.23353, 0.0965177, 1.22809,
0.111158, 1.23101, 0.129301, 1.23133, 0.149267, 1.23164,
0.172316, 1.23361, 0.212401, 1.23575, 0.263723, 1.23032,
0.30517, 1.23323, 0.354222, 1.23355, 0.40892, 1.23387,
0.472065, 1.23583, 0.581157, 1.23798, 0.720591, 1.23251,
0.82596, 0.026421, 0.880102;






plotting data






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 1 hour ago









Emilio Pisanty

5,6842759




5,6842759










asked 3 hours ago









John Taylor

668211




668211







  • 1




    That's really the way two translucent objects interact: stack a number of them and the color will darken. This is mentioned in the docs for Opacity.
    – J. M. is computer-less♦
    3 hours ago












  • 1




    That's really the way two translucent objects interact: stack a number of them and the color will darken. This is mentioned in the docs for Opacity.
    – J. M. is computer-less♦
    3 hours ago







1




1




That's really the way two translucent objects interact: stack a number of them and the color will darken. This is mentioned in the docs for Opacity.
– J. M. is computer-less♦
3 hours ago




That's really the way two translucent objects interact: stack a number of them and the color will darken. This is mentioned in the docs for Opacity.
– J. M. is computer-less♦
3 hours ago










3 Answers
3






active

oldest

votes

















up vote
2
down vote













This can be achieved by providing an explicit full Opacity[1] in the graphics-styling option of the specified Filling:



ListLogPlot[
data1, data2
, PlotStyle -> Blue, Blue
, Joined -> True
, Filling ->
1 -> Top, Directive[Lighter[Blue], Opacity[1]],
2 -> Top, Directive[Lighter[Blue], Opacity[1]]

]


Mathematica graphics






share|improve this answer





























    up vote
    0
    down vote













    rgn1 = Polygon[#[[1]], Log10[#[[2]]] & /@ data1];

    rgn2 = Polygon[#[[1]], Log10[#[[2]]] & /@ data2];

    rgn3 = RegionUnion[rgn1, rgn2];

    RegionPlot[rgn3, AspectRatio -> 1/GoldenRatio,
    FrameLabel -> "x", "Log10[y]"]


    enter image description here



    Or



    Show[
    RegionPlot[rgn3, AspectRatio -> 1/GoldenRatio,
    FrameLabel -> "x", "Log10[y]"],
    Graphics[
    Line[#[[1]], Log10[#[[2]]] & /@ data1],
    Line[#[[1]], Log10[#[[2]]] & /@ data2]]]


    enter image description here






    share|improve this answer





























      up vote
      0
      down vote













       ListLogPlot[data1, data2, Joined -> True, PlotStyle -> Blue, 
      Filling -> Top, FillingStyle -> Opacity[1, LightBlue]]


      enter image description here



      You can also post-process to change the FaceForm of polygons:



      ListLogPlot[data1, data2, Joined -> True, PlotStyle -> Blue, Filling -> Automatic] /.
      p_Polygon:> FaceForm[Opacity[1, LightBlue]], p


      enter image description here





      share




















        Your Answer




        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "387"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        convertImagesToLinks: false,
        noModals: false,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: null,
        bindNavPrevention: true,
        postfix: "",
        onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













         

        draft saved


        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f183851%2fhow-to-plot-two-sets-of-data-with-a-filling-such-that-the-fillings-intersection%23new-answer', 'question_page');

        );

        Post as a guest






























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        2
        down vote













        This can be achieved by providing an explicit full Opacity[1] in the graphics-styling option of the specified Filling:



        ListLogPlot[
        data1, data2
        , PlotStyle -> Blue, Blue
        , Joined -> True
        , Filling ->
        1 -> Top, Directive[Lighter[Blue], Opacity[1]],
        2 -> Top, Directive[Lighter[Blue], Opacity[1]]

        ]


        Mathematica graphics






        share|improve this answer


























          up vote
          2
          down vote













          This can be achieved by providing an explicit full Opacity[1] in the graphics-styling option of the specified Filling:



          ListLogPlot[
          data1, data2
          , PlotStyle -> Blue, Blue
          , Joined -> True
          , Filling ->
          1 -> Top, Directive[Lighter[Blue], Opacity[1]],
          2 -> Top, Directive[Lighter[Blue], Opacity[1]]

          ]


          Mathematica graphics






          share|improve this answer
























            up vote
            2
            down vote










            up vote
            2
            down vote









            This can be achieved by providing an explicit full Opacity[1] in the graphics-styling option of the specified Filling:



            ListLogPlot[
            data1, data2
            , PlotStyle -> Blue, Blue
            , Joined -> True
            , Filling ->
            1 -> Top, Directive[Lighter[Blue], Opacity[1]],
            2 -> Top, Directive[Lighter[Blue], Opacity[1]]

            ]


            Mathematica graphics






            share|improve this answer














            This can be achieved by providing an explicit full Opacity[1] in the graphics-styling option of the specified Filling:



            ListLogPlot[
            data1, data2
            , PlotStyle -> Blue, Blue
            , Joined -> True
            , Filling ->
            1 -> Top, Directive[Lighter[Blue], Opacity[1]],
            2 -> Top, Directive[Lighter[Blue], Opacity[1]]

            ]


            Mathematica graphics







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited 10 mins ago

























            answered 1 hour ago









            Emilio Pisanty

            5,6842759




            5,6842759




















                up vote
                0
                down vote













                rgn1 = Polygon[#[[1]], Log10[#[[2]]] & /@ data1];

                rgn2 = Polygon[#[[1]], Log10[#[[2]]] & /@ data2];

                rgn3 = RegionUnion[rgn1, rgn2];

                RegionPlot[rgn3, AspectRatio -> 1/GoldenRatio,
                FrameLabel -> "x", "Log10[y]"]


                enter image description here



                Or



                Show[
                RegionPlot[rgn3, AspectRatio -> 1/GoldenRatio,
                FrameLabel -> "x", "Log10[y]"],
                Graphics[
                Line[#[[1]], Log10[#[[2]]] & /@ data1],
                Line[#[[1]], Log10[#[[2]]] & /@ data2]]]


                enter image description here






                share|improve this answer


























                  up vote
                  0
                  down vote













                  rgn1 = Polygon[#[[1]], Log10[#[[2]]] & /@ data1];

                  rgn2 = Polygon[#[[1]], Log10[#[[2]]] & /@ data2];

                  rgn3 = RegionUnion[rgn1, rgn2];

                  RegionPlot[rgn3, AspectRatio -> 1/GoldenRatio,
                  FrameLabel -> "x", "Log10[y]"]


                  enter image description here



                  Or



                  Show[
                  RegionPlot[rgn3, AspectRatio -> 1/GoldenRatio,
                  FrameLabel -> "x", "Log10[y]"],
                  Graphics[
                  Line[#[[1]], Log10[#[[2]]] & /@ data1],
                  Line[#[[1]], Log10[#[[2]]] & /@ data2]]]


                  enter image description here






                  share|improve this answer
























                    up vote
                    0
                    down vote










                    up vote
                    0
                    down vote









                    rgn1 = Polygon[#[[1]], Log10[#[[2]]] & /@ data1];

                    rgn2 = Polygon[#[[1]], Log10[#[[2]]] & /@ data2];

                    rgn3 = RegionUnion[rgn1, rgn2];

                    RegionPlot[rgn3, AspectRatio -> 1/GoldenRatio,
                    FrameLabel -> "x", "Log10[y]"]


                    enter image description here



                    Or



                    Show[
                    RegionPlot[rgn3, AspectRatio -> 1/GoldenRatio,
                    FrameLabel -> "x", "Log10[y]"],
                    Graphics[
                    Line[#[[1]], Log10[#[[2]]] & /@ data1],
                    Line[#[[1]], Log10[#[[2]]] & /@ data2]]]


                    enter image description here






                    share|improve this answer














                    rgn1 = Polygon[#[[1]], Log10[#[[2]]] & /@ data1];

                    rgn2 = Polygon[#[[1]], Log10[#[[2]]] & /@ data2];

                    rgn3 = RegionUnion[rgn1, rgn2];

                    RegionPlot[rgn3, AspectRatio -> 1/GoldenRatio,
                    FrameLabel -> "x", "Log10[y]"]


                    enter image description here



                    Or



                    Show[
                    RegionPlot[rgn3, AspectRatio -> 1/GoldenRatio,
                    FrameLabel -> "x", "Log10[y]"],
                    Graphics[
                    Line[#[[1]], Log10[#[[2]]] & /@ data1],
                    Line[#[[1]], Log10[#[[2]]] & /@ data2]]]


                    enter image description here







                    share|improve this answer














                    share|improve this answer



                    share|improve this answer








                    edited 2 hours ago

























                    answered 2 hours ago









                    Bob Hanlon

                    56.3k23590




                    56.3k23590




















                        up vote
                        0
                        down vote













                         ListLogPlot[data1, data2, Joined -> True, PlotStyle -> Blue, 
                        Filling -> Top, FillingStyle -> Opacity[1, LightBlue]]


                        enter image description here



                        You can also post-process to change the FaceForm of polygons:



                        ListLogPlot[data1, data2, Joined -> True, PlotStyle -> Blue, Filling -> Automatic] /.
                        p_Polygon:> FaceForm[Opacity[1, LightBlue]], p


                        enter image description here





                        share
























                          up vote
                          0
                          down vote













                           ListLogPlot[data1, data2, Joined -> True, PlotStyle -> Blue, 
                          Filling -> Top, FillingStyle -> Opacity[1, LightBlue]]


                          enter image description here



                          You can also post-process to change the FaceForm of polygons:



                          ListLogPlot[data1, data2, Joined -> True, PlotStyle -> Blue, Filling -> Automatic] /.
                          p_Polygon:> FaceForm[Opacity[1, LightBlue]], p


                          enter image description here





                          share






















                            up vote
                            0
                            down vote










                            up vote
                            0
                            down vote









                             ListLogPlot[data1, data2, Joined -> True, PlotStyle -> Blue, 
                            Filling -> Top, FillingStyle -> Opacity[1, LightBlue]]


                            enter image description here



                            You can also post-process to change the FaceForm of polygons:



                            ListLogPlot[data1, data2, Joined -> True, PlotStyle -> Blue, Filling -> Automatic] /.
                            p_Polygon:> FaceForm[Opacity[1, LightBlue]], p


                            enter image description here





                            share












                             ListLogPlot[data1, data2, Joined -> True, PlotStyle -> Blue, 
                            Filling -> Top, FillingStyle -> Opacity[1, LightBlue]]


                            enter image description here



                            You can also post-process to change the FaceForm of polygons:



                            ListLogPlot[data1, data2, Joined -> True, PlotStyle -> Blue, Filling -> Automatic] /.
                            p_Polygon:> FaceForm[Opacity[1, LightBlue]], p


                            enter image description here






                            share











                            share


                            share










                            answered 5 mins ago









                            kglr

                            165k8188388




                            165k8188388



























                                 

                                draft saved


                                draft discarded















































                                 


                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f183851%2fhow-to-plot-two-sets-of-data-with-a-filling-such-that-the-fillings-intersection%23new-answer', 'question_page');

                                );

                                Post as a guest













































































                                Popular posts from this blog

                                How to check contact read email or not when send email to Individual?

                                How many registers does an x86_64 CPU actually have?

                                Nur Jahan