How to plot two sets of data with a Filling such that the fillings' intersection doesn't change color?

Multi tool use
Multi tool use

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite












Consider two sets of data, data1 and data2 (they are given below). If I try to plot them,



ListLogPlot[data1, data2, 
PlotStyle -> Blue, Blue, Joined -> True, Filling -> Automatic]


I will obtain something like this: enter image description here



Is there any way to plot them in a way such that the area of their intersection will be the same color as the areas where they are not intersected? Likely without arbitrary opacity.



data1=0.2999999847368421, 0.00007847597621237087, 0.2999999847368421, 
0.000041788092286919155, 0.2999999847368421,
0.000022251964757397896, 0.2999999847368421,
0.0000220678601151695, 0.2999086890022088,
0.00002208484265800435, 0.299135470025212,
0.000022251964757397896, 0.29305964572645016,
0.000023559042135848565, 0.2923684065927977,
0.000023715417699775446, 0.29149457598987855,
0.00002391694676035076, 0.28622923423326985,
0.000025170342352025765, 0.2847368284487534,
0.000025544864044561507, 0.28283824980403144,
0.00002602887044236093, 0.27941745452266786,
0.00002693325175144503, 0.2771052503047091,
0.000027574767347538766, 0.27414093369651227,
0.00002842332559813959, 0.27262803295115967,
0.00002887289075546239, 0.26947367216066476,
0.000029839338905920736, 0.2674167233640278,
0.000030493723236879715, 0.26585724316222964,
0.00003099987331245628, 0.2653989013108051,
0.00003115287099495151, 0.2618420940166204,
0.00003235951331170112, 0.25910881151239357,
0.000033345050500262494, 0.2566121526469104,
0.00003427085042641089, 0.2542105158725761,
0.000035200684917703386, 0.2523827380016514,
0.000035933924343589724, 0.24776950863528088,
0.00003787531113975004, 0.2465789377285318,
0.000038403409002727274, 0.24567902263000313,
0.000038795354781778083, 0.2427631486565096,
0.00004014331161385088, 0.23939452236636505,
0.000041788092286919155, 0.23900139175396434,
0.000041974956094407755, 0.23894735958448746,
0.00004200725834238921, 0.23887469563243233,
0.00004203958544888939, 0.2323498453735351,
0.000045513079034589037, 0.23131578144044312,
0.000046097997889804963, 0.22991280821230217,
0.000046920871261138605, 0.22572438348871537,
0.00004945584514987175, 0.22368420329639882,
0.00005077423724654412, 0.22088757273140602,
0.00005264359063778916, 0.21912873245602082,
0.000053872622507582905, 0.21605262515235452,
0.000056131722625208974, 0.21256289227545141,
0.00005882848791880944, 0.21178408376368124,
0.00005944718178346996, 0.20842104700831018,
0.00006224574676266308, 0.20602313659049157,
0.00006437877343232213, 0.20259861495261233,
0.00006758604063277815, 0.20078946886426585,
0.00006936639909688728, 0.19950946540114126,
0.00007060462559901383, 0.19419568100982915,
0.00007203099599317158, 0.19315789072022155,
0.000070702457797849, 0.1915089779620479,
0.00006848623690747524, 0.1877043679595727,
0.0000655582201752986, 0.18552631257617724,
0.00006502581900288756, 0.18319547657564023,
0.00006473633752977752, 0.18022929678918553,
0.0000647164208590649, 0.1778947344321329,
0.00006579061639282816, 0.1759588922222545,
0.00006688264196152569, 0.17169966672487036,
0.000069698027991677, 0.17026315628808858,
0.00007074598227692727, 0.16915083886816806,
0.0000715890703672052, 0.1628570227132409,
0.00007702856693563057, 0.16263157814404428,
0.0000772540665362398, 0.16246575527909798,
0.00007740873598046131, 0.16137952235478703,
0.00007847597621237087, 0.1559371786636851,
0.00008479024550498915, 0.15499999999999997,
0.00008598570939586575, 0.15363429033701548,
0.0000878443636223182, 0.14952784545677286,
0.00009379466248802923, 0.14736842185595564,
0.00009723293672220618, 0.14409481765696008,
0.00010283357787557963, 0.14320049209320487,
0.00010446007275761177, 0.1397368437119113,
0.00011114188215085727, 0.13695884492949673,
0.00011716452189394137, 0.1342348783165591,
0.0001236085720280136, 0.132105265567867,
0.00012901013630317747, 0.13081408303519548,
0.00013246966302280202, 0.1257555540652051,
0.00014737401267806525, 0.12474012191469142,
0.00015065231188607817, 0.12447368742382268,
0.00015155898228429117, 0.12401348239414031,
0.00015308224162798693, 0.11874814063753161,
0.00017249445411395565, 0.11684210927977837,
0.0001805037702493432, 0.11336355547242224,
0.00019641246454919555, 0.11284559191674734,
0.0001989673011140506, 0.10921053113573405,
0.00021817518248477453, 0.10702874939582294,
0.0002311329610459566, 0.10215840142987279,
0.00026383042098478994, 0.10157895299168973,
0.0002681270934084663, 0.10129388671824277,
0.00027032239338430433, 0.10047595146305832,
0.00027676112692193297, 0.09562982481445986,
0.0003180103296691775, 0.09394737484764541,
0.0003344186780080345, 0.09030113499708517,
0.00037399586047134474, 0.09005519546705248,
0.0003768839705616018, 0.08986328810649669,
0.000379268855541332, 0.0863157967036011,
0.0004251992889145789, 0.08458490410208322,
0.00045052187423797835, 0.08046541697403586,
0.0005197437457472359, 0.07922640343258337,
0.0005435420441421504, 0.07868421855955678,
0.0005546081232062334, 0.0772551608358063,
0.0005848415758826891, 0.07400205159764678,
0.0006630728705670156, 0.07105264041551246,
0.0007465819667652495, 0.06890066952772653,
0.0008171453719603333, 0.0648482568169608,
0.000976053119336969, 0.0639297099358539,
0.0010179222593113134, 0.06342106227146814,
0.0010421678651143407, 0.061574652617965235,
0.0011368142898518605, 0.059100351891575864,
0.0012829449507075384, 0.05827869027987578,
0.0013375669973438838, 0.05578948412742382,
0.0015218623255611656, 0.054423774464439335,
0.0016374968051687928, 0.052420857837279254,
0.0018329796165180577, 0.04990743036747559,
0.0021178695173944147, 0.048157905983379504,
0.002355429130050617, 0.045558772313715974,
0.0027773557142080525, 0.04240441152322109,
0.003442245312276653, 0.04138897937270737,
0.0036963942496618823, 0.04052632783933518,
0.003935255900947914, 0.037409230613996765,
0.004997357778414752, 0.034321944240783525,
0.006464366915546581, 0.03363443146364672,
0.006871515294551954, 0.032894749695290854,
0.007340357190916253, 0.03006458192165723,
0.00960980353019457, 0.029078960623268695,
0.010620521351798435, 0.027826904834011422,
0.012139762227223483, 0.02671831377060655,
0.013689720812215192, 0.025263171551246535,
0.016196681390274872, 0.023599353367010308,
0.01987130548360278, 0.022580194859980952,
0.022797874696606883, 0.020711427067384165,
0.029399745399044594, 0.018960039505030245,
0.038365222254596924, 0.018287432153956024,
0.04281328422698936, 0.018065713941275055,
0.04437588266801011, 0.017631593407202217,
0.04774766079357238, 0.01649878102644564,
0.0586706142272511, 0.015658487632167324,
0.06831295475610606, 0.014859184159561115,
0.08040123611056546, 0.013815804335180057,
0.09971036507907274, 0.01348602178354533,
0.1072205750222915, 0.013113386131980664,
0.11676024205927839, 0.012086774911920015,
0.15098955580781592, 0.010000015263157896,
0.2660533148660376, 0.010000015263157896,
0.2835509385911756, 0.010000015263157896,
0.9999987396384276, 0.025263171551246535,
0.9999987396384276, 0.04052632783933518,
0.9999987396384276, 0.05578948412742382,
0.9999987396384276, 0.07105264041551246,
0.9999987396384276, 0.0863157967036011,
0.9999987396384276, 0.10157895299168973,
0.9999987396384276, 0.11684210927977837,
0.9999987396384276, 0.132105265567867,
0.9999987396384276, 0.14736842185595564,
0.9999987396384276, 0.16263157814404428,
0.9999987396384276, 0.1778947344321329,
0.9999987396384276, 0.19315789072022155,
0.9999987396384276, 0.20842104700831018,
0.9999987396384276, 0.22368420329639882,
0.9999987396384276, 0.23894735958448746,
0.9999987396384276, 0.2542105158725761,
0.9999987396384276, 0.2558203018873354,
0.9999987396384276, 0.260569543266527,
0.9002500410979579, 0.2618420940166204,
0.8757957440659601, 0.2640238757565315,
0.8351341545160378, 0.26662114624793726,
0.7901362222306625, 0.26947367216066476,
0.7443493438629281, 0.27036799772442,
0.7297218689571064, 0.2727174655075352,
0.6960563689327807, 0.27423036625288777,
0.6751722139909367, 0.2771052503047091,
0.6371246250347038, 0.27885850104532084,
0.6154467319250959, 0.2842505389234616,
0.5543124325647013, 0.2847368284487534,
0.5493035315917327, 0.2850405265047786,
0.5460174363420693, 0.2863466144635127,
0.532494677170081, 0.28855261752077555,
0.5110636800160765, 0.29126354188590853,
0.48606297039886726, 0.2923684065927977,
0.4762180131823315, 0.29410675190734686,
0.4612906069497988, 0.29751636811916365,
0.43375814254337697, 0.2999999847368421,
0.41514964772736146, 0.2999999847368421,
0.2835509385911756, 0.2999999847368421,
0.08040123611056546, 0.2999999847368421,
0.022797874696606883, 0.2999999847368421,
0.006464366915546581, 0.2999999847368421,
0.0018329796165180577, 0.2999999847368421,
0.0005197437457472359, 0.2999999847368421,
0.00014737401267806525, 0.2999999847368421,
0.00007847597621237087;

data2=0.026421, 0.880102, 0.0268178, 0.746742, 0.0271942,
0.634472, 0.0276739, 0.536112, 0.0280312, 0.47488, 0.0287076,
0.346523, 0.0291455, 0.296601, 0.0295175, 0.253896, 0.0300024,
0.215648, 0.030506, 0.181238, 0.0312802, 0.139177, 0.0319591,
0.119716, 0.0325865, 0.103702, 0.0332548,
0.0900265, 0.0339655, 0.0776198, 0.0344885,
0.0720466, 0.0357332, 0.0539909, 0.0364653,
0.0463016, 0.0372134, 0.0403451, 0.0379443,
0.035113, 0.0387223, 0.0304162, 0.0394182,
0.0275844, 0.0409623, 0.0203708, 0.0420865,
0.0178988, 0.0437596, 0.0155134, 0.0453807,
0.013276, 0.047063, 0.0115048, 0.0485016,
0.0112719, 0.0506136, 0.00833023, 0.0529264,
0.00747158, 0.0559817, 0.00688619, 0.0591538,
0.00619242, 0.0645948, 0.0056801, 0.0626333,
0.00566467, 0.0697434, 0.00456699, 0.0736612,
0.00417951, 0.0772273, 0.00379961, 0.0812595,
0.00349659, 0.0856752, 0.00315671, 0.0889625,
0.00310055, 0.0968806, 0.00250791, 0.102129,
0.00231113, 0.108357, 0.00218765, 0.114647,
0.00207634, 0.121303, 0.0019672, 0.126388,
0.0019222, 0.140037, 0.00170103, 0.148169,
0.00162699, 0.156771, 0.0015433, 0.165872,
0.00146304, 0.175501, 0.00138861, 0.183798,
0.00134368, 0.204696, 0.00118797, 0.216582,
0.00113424, 0.229153, 0.00107144, 0.242455,
0.00101211, 0.256528, 0.000956066, 0.267965,
0.000925368, 0.299199, 0.000814051, 0.316558,
0.000758552, 0.334914, 0.000694366, 0.354334,
0.000635234, 0.374881, 0.000582519, 0.387607,
0.000576501, 0.420909, 0.000451888, 0.441583,
0.000398565, 0.464751, 0.000346267, 0.489135,
0.000301422, 0.509853, 0.000278623, 0.545726,
0.000211186, 0.569648, 0.000185061, 0.593935,
0.000159681, 0.61827, 0.000137351, 0.637911,
0.000119888, 0.67462, 0.0000870067, 0.698866,
0.0000749829, 0.720831, 0.0000640726, 0.739399,
0.0000554034, 0.762664, 0.0000482517, 0.805269,
0.0000347985, 0.825927, 0.0000300192, 0.838617,
0.0000258637, 0.860889, 0.0000222026, 0.879836,
0.0000189785, 0.886325, 0.0000177987, 0.919887,
0.0000133371, 0.93044, 0.0000114575, 0.94442,
9.76004*10^-6, 0.960141, 8.29786*10^-6, 0.977934,
6.98367*10^-6, 0.967144, 6.4857*10^-6, 1.00723,
4.91017*10^-6, 1.01476, 4.25439*10^-6, 1.02665,
3.66046*10^-6, 1.03528, 3.15301*10^-6, 1.04571,
2.73125*10^-6, 1.05629, 2.43485*10^-6, 1.07346,
1.75992*10^-6, 1.08666, 1.50936*10^-6, 1.09757,
1.28898*10^-6, 1.10808, 1.10339*10^-6, 1.10932,
9.40047*10^-7, 1.11468, 8.59312*10^-7, 1.12268,
6.29552*10^-7, 1.13343, 5.25539*10^-7, 1.14154,
4.38902*10^-7, 1.15344, 3.62605*10^-7, 1.17927,
3.16306*10^-7, 1.20399, 2.032*10^-7, 1.19695,
2.42533*10^-7, 1.21411, 2.94621*10^-7, 1.22229,
4.40625*10^-7, 1.22096, 5.31288*10^-7, 1.22468,
7.08256*10^-7, 1.22694, 8.76305*10^-7, 1.20904,
1.30488*10^-6, 1.20948, 1.60216*10^-6, 1.20979,
1.84956*10^-6, 1.2101, 2.13517*10^-6, 1.21041,
2.46487*10^-6, 1.21114, 3.4547*10^-6, 1.21155,
4.16101*10^-6, 1.21186, 4.80354*10^-6, 1.21217,
5.5453*10^-6, 1.20669, 6.84148*10^-6, 1.20692,
8.6485*10^-6, 1.20884, 0.0000106246, 1.21093,
0.0000131545, 1.21286, 0.0000162406, 1.21186,
0.0000202058, 1.21529, 0.0000233107, 1.20996,
0.0000272315, 1.21282, 0.0000314739, 1.21313,
0.000036334, 1.21344, 0.0000419446, 1.21537,
0.0000515103, 1.21748, 0.0000636935, 1.21779,
0.0000735289, 1.2124, 0.0000840811, 1.21529,
0.0000981186, 1.2156, 0.00011327, 1.21592,
0.000130761, 1.21786, 0.000161477, 1.21998,
0.000200909, 1.2146, 0.000230834, 1.21748,
0.000268798, 1.2178, 0.000310305, 1.21811,
0.000358222, 1.22005, 0.000441824, 1.22218,
0.000548959, 1.21679, 0.000633728, 1.21968,
0.000736378, 1.21999, 0.000850087, 1.22031,
0.000981356, 1.22225, 0.00120889, 1.22438,
0.00149996, 1.21899, 0.00173982, 1.22188, 0.00201732, 1.2222,
0.00232883, 1.22251, 0.00268845, 1.22445, 0.00330769, 1.22658,
0.00409847, 1.2212, 0.00477648, 1.22409, 0.0055265, 1.2244,
0.00637989, 1.22472, 0.00736505, 1.22666, 0.00905029, 1.22879,
0.0111986, 1.2291, 0.0129278, 1.22366, 0.014748, 1.22658,
0.0172287, 1.2269, 0.0198891, 1.22721, 0.0229603, 1.23332,
0.0265346, 1.231, 0.0305987, 1.23132, 0.0353237, 1.22588,
0.040489, 1.22879, 0.0471983, 1.22911, 0.0544865, 1.22943,
0.0629002, 1.23139, 0.077628, 1.23353, 0.0965177, 1.22809,
0.111158, 1.23101, 0.129301, 1.23133, 0.149267, 1.23164,
0.172316, 1.23361, 0.212401, 1.23575, 0.263723, 1.23032,
0.30517, 1.23323, 0.354222, 1.23355, 0.40892, 1.23387,
0.472065, 1.23583, 0.581157, 1.23798, 0.720591, 1.23251,
0.82596, 0.026421, 0.880102;









share|improve this question



















  • 1




    That's really the way two translucent objects interact: stack a number of them and the color will darken. This is mentioned in the docs for Opacity.
    – J. M. is computer-less♦
    3 hours ago














up vote
2
down vote

favorite












Consider two sets of data, data1 and data2 (they are given below). If I try to plot them,



ListLogPlot[data1, data2, 
PlotStyle -> Blue, Blue, Joined -> True, Filling -> Automatic]


I will obtain something like this: enter image description here



Is there any way to plot them in a way such that the area of their intersection will be the same color as the areas where they are not intersected? Likely without arbitrary opacity.



data1=0.2999999847368421, 0.00007847597621237087, 0.2999999847368421, 
0.000041788092286919155, 0.2999999847368421,
0.000022251964757397896, 0.2999999847368421,
0.0000220678601151695, 0.2999086890022088,
0.00002208484265800435, 0.299135470025212,
0.000022251964757397896, 0.29305964572645016,
0.000023559042135848565, 0.2923684065927977,
0.000023715417699775446, 0.29149457598987855,
0.00002391694676035076, 0.28622923423326985,
0.000025170342352025765, 0.2847368284487534,
0.000025544864044561507, 0.28283824980403144,
0.00002602887044236093, 0.27941745452266786,
0.00002693325175144503, 0.2771052503047091,
0.000027574767347538766, 0.27414093369651227,
0.00002842332559813959, 0.27262803295115967,
0.00002887289075546239, 0.26947367216066476,
0.000029839338905920736, 0.2674167233640278,
0.000030493723236879715, 0.26585724316222964,
0.00003099987331245628, 0.2653989013108051,
0.00003115287099495151, 0.2618420940166204,
0.00003235951331170112, 0.25910881151239357,
0.000033345050500262494, 0.2566121526469104,
0.00003427085042641089, 0.2542105158725761,
0.000035200684917703386, 0.2523827380016514,
0.000035933924343589724, 0.24776950863528088,
0.00003787531113975004, 0.2465789377285318,
0.000038403409002727274, 0.24567902263000313,
0.000038795354781778083, 0.2427631486565096,
0.00004014331161385088, 0.23939452236636505,
0.000041788092286919155, 0.23900139175396434,
0.000041974956094407755, 0.23894735958448746,
0.00004200725834238921, 0.23887469563243233,
0.00004203958544888939, 0.2323498453735351,
0.000045513079034589037, 0.23131578144044312,
0.000046097997889804963, 0.22991280821230217,
0.000046920871261138605, 0.22572438348871537,
0.00004945584514987175, 0.22368420329639882,
0.00005077423724654412, 0.22088757273140602,
0.00005264359063778916, 0.21912873245602082,
0.000053872622507582905, 0.21605262515235452,
0.000056131722625208974, 0.21256289227545141,
0.00005882848791880944, 0.21178408376368124,
0.00005944718178346996, 0.20842104700831018,
0.00006224574676266308, 0.20602313659049157,
0.00006437877343232213, 0.20259861495261233,
0.00006758604063277815, 0.20078946886426585,
0.00006936639909688728, 0.19950946540114126,
0.00007060462559901383, 0.19419568100982915,
0.00007203099599317158, 0.19315789072022155,
0.000070702457797849, 0.1915089779620479,
0.00006848623690747524, 0.1877043679595727,
0.0000655582201752986, 0.18552631257617724,
0.00006502581900288756, 0.18319547657564023,
0.00006473633752977752, 0.18022929678918553,
0.0000647164208590649, 0.1778947344321329,
0.00006579061639282816, 0.1759588922222545,
0.00006688264196152569, 0.17169966672487036,
0.000069698027991677, 0.17026315628808858,
0.00007074598227692727, 0.16915083886816806,
0.0000715890703672052, 0.1628570227132409,
0.00007702856693563057, 0.16263157814404428,
0.0000772540665362398, 0.16246575527909798,
0.00007740873598046131, 0.16137952235478703,
0.00007847597621237087, 0.1559371786636851,
0.00008479024550498915, 0.15499999999999997,
0.00008598570939586575, 0.15363429033701548,
0.0000878443636223182, 0.14952784545677286,
0.00009379466248802923, 0.14736842185595564,
0.00009723293672220618, 0.14409481765696008,
0.00010283357787557963, 0.14320049209320487,
0.00010446007275761177, 0.1397368437119113,
0.00011114188215085727, 0.13695884492949673,
0.00011716452189394137, 0.1342348783165591,
0.0001236085720280136, 0.132105265567867,
0.00012901013630317747, 0.13081408303519548,
0.00013246966302280202, 0.1257555540652051,
0.00014737401267806525, 0.12474012191469142,
0.00015065231188607817, 0.12447368742382268,
0.00015155898228429117, 0.12401348239414031,
0.00015308224162798693, 0.11874814063753161,
0.00017249445411395565, 0.11684210927977837,
0.0001805037702493432, 0.11336355547242224,
0.00019641246454919555, 0.11284559191674734,
0.0001989673011140506, 0.10921053113573405,
0.00021817518248477453, 0.10702874939582294,
0.0002311329610459566, 0.10215840142987279,
0.00026383042098478994, 0.10157895299168973,
0.0002681270934084663, 0.10129388671824277,
0.00027032239338430433, 0.10047595146305832,
0.00027676112692193297, 0.09562982481445986,
0.0003180103296691775, 0.09394737484764541,
0.0003344186780080345, 0.09030113499708517,
0.00037399586047134474, 0.09005519546705248,
0.0003768839705616018, 0.08986328810649669,
0.000379268855541332, 0.0863157967036011,
0.0004251992889145789, 0.08458490410208322,
0.00045052187423797835, 0.08046541697403586,
0.0005197437457472359, 0.07922640343258337,
0.0005435420441421504, 0.07868421855955678,
0.0005546081232062334, 0.0772551608358063,
0.0005848415758826891, 0.07400205159764678,
0.0006630728705670156, 0.07105264041551246,
0.0007465819667652495, 0.06890066952772653,
0.0008171453719603333, 0.0648482568169608,
0.000976053119336969, 0.0639297099358539,
0.0010179222593113134, 0.06342106227146814,
0.0010421678651143407, 0.061574652617965235,
0.0011368142898518605, 0.059100351891575864,
0.0012829449507075384, 0.05827869027987578,
0.0013375669973438838, 0.05578948412742382,
0.0015218623255611656, 0.054423774464439335,
0.0016374968051687928, 0.052420857837279254,
0.0018329796165180577, 0.04990743036747559,
0.0021178695173944147, 0.048157905983379504,
0.002355429130050617, 0.045558772313715974,
0.0027773557142080525, 0.04240441152322109,
0.003442245312276653, 0.04138897937270737,
0.0036963942496618823, 0.04052632783933518,
0.003935255900947914, 0.037409230613996765,
0.004997357778414752, 0.034321944240783525,
0.006464366915546581, 0.03363443146364672,
0.006871515294551954, 0.032894749695290854,
0.007340357190916253, 0.03006458192165723,
0.00960980353019457, 0.029078960623268695,
0.010620521351798435, 0.027826904834011422,
0.012139762227223483, 0.02671831377060655,
0.013689720812215192, 0.025263171551246535,
0.016196681390274872, 0.023599353367010308,
0.01987130548360278, 0.022580194859980952,
0.022797874696606883, 0.020711427067384165,
0.029399745399044594, 0.018960039505030245,
0.038365222254596924, 0.018287432153956024,
0.04281328422698936, 0.018065713941275055,
0.04437588266801011, 0.017631593407202217,
0.04774766079357238, 0.01649878102644564,
0.0586706142272511, 0.015658487632167324,
0.06831295475610606, 0.014859184159561115,
0.08040123611056546, 0.013815804335180057,
0.09971036507907274, 0.01348602178354533,
0.1072205750222915, 0.013113386131980664,
0.11676024205927839, 0.012086774911920015,
0.15098955580781592, 0.010000015263157896,
0.2660533148660376, 0.010000015263157896,
0.2835509385911756, 0.010000015263157896,
0.9999987396384276, 0.025263171551246535,
0.9999987396384276, 0.04052632783933518,
0.9999987396384276, 0.05578948412742382,
0.9999987396384276, 0.07105264041551246,
0.9999987396384276, 0.0863157967036011,
0.9999987396384276, 0.10157895299168973,
0.9999987396384276, 0.11684210927977837,
0.9999987396384276, 0.132105265567867,
0.9999987396384276, 0.14736842185595564,
0.9999987396384276, 0.16263157814404428,
0.9999987396384276, 0.1778947344321329,
0.9999987396384276, 0.19315789072022155,
0.9999987396384276, 0.20842104700831018,
0.9999987396384276, 0.22368420329639882,
0.9999987396384276, 0.23894735958448746,
0.9999987396384276, 0.2542105158725761,
0.9999987396384276, 0.2558203018873354,
0.9999987396384276, 0.260569543266527,
0.9002500410979579, 0.2618420940166204,
0.8757957440659601, 0.2640238757565315,
0.8351341545160378, 0.26662114624793726,
0.7901362222306625, 0.26947367216066476,
0.7443493438629281, 0.27036799772442,
0.7297218689571064, 0.2727174655075352,
0.6960563689327807, 0.27423036625288777,
0.6751722139909367, 0.2771052503047091,
0.6371246250347038, 0.27885850104532084,
0.6154467319250959, 0.2842505389234616,
0.5543124325647013, 0.2847368284487534,
0.5493035315917327, 0.2850405265047786,
0.5460174363420693, 0.2863466144635127,
0.532494677170081, 0.28855261752077555,
0.5110636800160765, 0.29126354188590853,
0.48606297039886726, 0.2923684065927977,
0.4762180131823315, 0.29410675190734686,
0.4612906069497988, 0.29751636811916365,
0.43375814254337697, 0.2999999847368421,
0.41514964772736146, 0.2999999847368421,
0.2835509385911756, 0.2999999847368421,
0.08040123611056546, 0.2999999847368421,
0.022797874696606883, 0.2999999847368421,
0.006464366915546581, 0.2999999847368421,
0.0018329796165180577, 0.2999999847368421,
0.0005197437457472359, 0.2999999847368421,
0.00014737401267806525, 0.2999999847368421,
0.00007847597621237087;

data2=0.026421, 0.880102, 0.0268178, 0.746742, 0.0271942,
0.634472, 0.0276739, 0.536112, 0.0280312, 0.47488, 0.0287076,
0.346523, 0.0291455, 0.296601, 0.0295175, 0.253896, 0.0300024,
0.215648, 0.030506, 0.181238, 0.0312802, 0.139177, 0.0319591,
0.119716, 0.0325865, 0.103702, 0.0332548,
0.0900265, 0.0339655, 0.0776198, 0.0344885,
0.0720466, 0.0357332, 0.0539909, 0.0364653,
0.0463016, 0.0372134, 0.0403451, 0.0379443,
0.035113, 0.0387223, 0.0304162, 0.0394182,
0.0275844, 0.0409623, 0.0203708, 0.0420865,
0.0178988, 0.0437596, 0.0155134, 0.0453807,
0.013276, 0.047063, 0.0115048, 0.0485016,
0.0112719, 0.0506136, 0.00833023, 0.0529264,
0.00747158, 0.0559817, 0.00688619, 0.0591538,
0.00619242, 0.0645948, 0.0056801, 0.0626333,
0.00566467, 0.0697434, 0.00456699, 0.0736612,
0.00417951, 0.0772273, 0.00379961, 0.0812595,
0.00349659, 0.0856752, 0.00315671, 0.0889625,
0.00310055, 0.0968806, 0.00250791, 0.102129,
0.00231113, 0.108357, 0.00218765, 0.114647,
0.00207634, 0.121303, 0.0019672, 0.126388,
0.0019222, 0.140037, 0.00170103, 0.148169,
0.00162699, 0.156771, 0.0015433, 0.165872,
0.00146304, 0.175501, 0.00138861, 0.183798,
0.00134368, 0.204696, 0.00118797, 0.216582,
0.00113424, 0.229153, 0.00107144, 0.242455,
0.00101211, 0.256528, 0.000956066, 0.267965,
0.000925368, 0.299199, 0.000814051, 0.316558,
0.000758552, 0.334914, 0.000694366, 0.354334,
0.000635234, 0.374881, 0.000582519, 0.387607,
0.000576501, 0.420909, 0.000451888, 0.441583,
0.000398565, 0.464751, 0.000346267, 0.489135,
0.000301422, 0.509853, 0.000278623, 0.545726,
0.000211186, 0.569648, 0.000185061, 0.593935,
0.000159681, 0.61827, 0.000137351, 0.637911,
0.000119888, 0.67462, 0.0000870067, 0.698866,
0.0000749829, 0.720831, 0.0000640726, 0.739399,
0.0000554034, 0.762664, 0.0000482517, 0.805269,
0.0000347985, 0.825927, 0.0000300192, 0.838617,
0.0000258637, 0.860889, 0.0000222026, 0.879836,
0.0000189785, 0.886325, 0.0000177987, 0.919887,
0.0000133371, 0.93044, 0.0000114575, 0.94442,
9.76004*10^-6, 0.960141, 8.29786*10^-6, 0.977934,
6.98367*10^-6, 0.967144, 6.4857*10^-6, 1.00723,
4.91017*10^-6, 1.01476, 4.25439*10^-6, 1.02665,
3.66046*10^-6, 1.03528, 3.15301*10^-6, 1.04571,
2.73125*10^-6, 1.05629, 2.43485*10^-6, 1.07346,
1.75992*10^-6, 1.08666, 1.50936*10^-6, 1.09757,
1.28898*10^-6, 1.10808, 1.10339*10^-6, 1.10932,
9.40047*10^-7, 1.11468, 8.59312*10^-7, 1.12268,
6.29552*10^-7, 1.13343, 5.25539*10^-7, 1.14154,
4.38902*10^-7, 1.15344, 3.62605*10^-7, 1.17927,
3.16306*10^-7, 1.20399, 2.032*10^-7, 1.19695,
2.42533*10^-7, 1.21411, 2.94621*10^-7, 1.22229,
4.40625*10^-7, 1.22096, 5.31288*10^-7, 1.22468,
7.08256*10^-7, 1.22694, 8.76305*10^-7, 1.20904,
1.30488*10^-6, 1.20948, 1.60216*10^-6, 1.20979,
1.84956*10^-6, 1.2101, 2.13517*10^-6, 1.21041,
2.46487*10^-6, 1.21114, 3.4547*10^-6, 1.21155,
4.16101*10^-6, 1.21186, 4.80354*10^-6, 1.21217,
5.5453*10^-6, 1.20669, 6.84148*10^-6, 1.20692,
8.6485*10^-6, 1.20884, 0.0000106246, 1.21093,
0.0000131545, 1.21286, 0.0000162406, 1.21186,
0.0000202058, 1.21529, 0.0000233107, 1.20996,
0.0000272315, 1.21282, 0.0000314739, 1.21313,
0.000036334, 1.21344, 0.0000419446, 1.21537,
0.0000515103, 1.21748, 0.0000636935, 1.21779,
0.0000735289, 1.2124, 0.0000840811, 1.21529,
0.0000981186, 1.2156, 0.00011327, 1.21592,
0.000130761, 1.21786, 0.000161477, 1.21998,
0.000200909, 1.2146, 0.000230834, 1.21748,
0.000268798, 1.2178, 0.000310305, 1.21811,
0.000358222, 1.22005, 0.000441824, 1.22218,
0.000548959, 1.21679, 0.000633728, 1.21968,
0.000736378, 1.21999, 0.000850087, 1.22031,
0.000981356, 1.22225, 0.00120889, 1.22438,
0.00149996, 1.21899, 0.00173982, 1.22188, 0.00201732, 1.2222,
0.00232883, 1.22251, 0.00268845, 1.22445, 0.00330769, 1.22658,
0.00409847, 1.2212, 0.00477648, 1.22409, 0.0055265, 1.2244,
0.00637989, 1.22472, 0.00736505, 1.22666, 0.00905029, 1.22879,
0.0111986, 1.2291, 0.0129278, 1.22366, 0.014748, 1.22658,
0.0172287, 1.2269, 0.0198891, 1.22721, 0.0229603, 1.23332,
0.0265346, 1.231, 0.0305987, 1.23132, 0.0353237, 1.22588,
0.040489, 1.22879, 0.0471983, 1.22911, 0.0544865, 1.22943,
0.0629002, 1.23139, 0.077628, 1.23353, 0.0965177, 1.22809,
0.111158, 1.23101, 0.129301, 1.23133, 0.149267, 1.23164,
0.172316, 1.23361, 0.212401, 1.23575, 0.263723, 1.23032,
0.30517, 1.23323, 0.354222, 1.23355, 0.40892, 1.23387,
0.472065, 1.23583, 0.581157, 1.23798, 0.720591, 1.23251,
0.82596, 0.026421, 0.880102;









share|improve this question



















  • 1




    That's really the way two translucent objects interact: stack a number of them and the color will darken. This is mentioned in the docs for Opacity.
    – J. M. is computer-less♦
    3 hours ago












up vote
2
down vote

favorite









up vote
2
down vote

favorite











Consider two sets of data, data1 and data2 (they are given below). If I try to plot them,



ListLogPlot[data1, data2, 
PlotStyle -> Blue, Blue, Joined -> True, Filling -> Automatic]


I will obtain something like this: enter image description here



Is there any way to plot them in a way such that the area of their intersection will be the same color as the areas where they are not intersected? Likely without arbitrary opacity.



data1=0.2999999847368421, 0.00007847597621237087, 0.2999999847368421, 
0.000041788092286919155, 0.2999999847368421,
0.000022251964757397896, 0.2999999847368421,
0.0000220678601151695, 0.2999086890022088,
0.00002208484265800435, 0.299135470025212,
0.000022251964757397896, 0.29305964572645016,
0.000023559042135848565, 0.2923684065927977,
0.000023715417699775446, 0.29149457598987855,
0.00002391694676035076, 0.28622923423326985,
0.000025170342352025765, 0.2847368284487534,
0.000025544864044561507, 0.28283824980403144,
0.00002602887044236093, 0.27941745452266786,
0.00002693325175144503, 0.2771052503047091,
0.000027574767347538766, 0.27414093369651227,
0.00002842332559813959, 0.27262803295115967,
0.00002887289075546239, 0.26947367216066476,
0.000029839338905920736, 0.2674167233640278,
0.000030493723236879715, 0.26585724316222964,
0.00003099987331245628, 0.2653989013108051,
0.00003115287099495151, 0.2618420940166204,
0.00003235951331170112, 0.25910881151239357,
0.000033345050500262494, 0.2566121526469104,
0.00003427085042641089, 0.2542105158725761,
0.000035200684917703386, 0.2523827380016514,
0.000035933924343589724, 0.24776950863528088,
0.00003787531113975004, 0.2465789377285318,
0.000038403409002727274, 0.24567902263000313,
0.000038795354781778083, 0.2427631486565096,
0.00004014331161385088, 0.23939452236636505,
0.000041788092286919155, 0.23900139175396434,
0.000041974956094407755, 0.23894735958448746,
0.00004200725834238921, 0.23887469563243233,
0.00004203958544888939, 0.2323498453735351,
0.000045513079034589037, 0.23131578144044312,
0.000046097997889804963, 0.22991280821230217,
0.000046920871261138605, 0.22572438348871537,
0.00004945584514987175, 0.22368420329639882,
0.00005077423724654412, 0.22088757273140602,
0.00005264359063778916, 0.21912873245602082,
0.000053872622507582905, 0.21605262515235452,
0.000056131722625208974, 0.21256289227545141,
0.00005882848791880944, 0.21178408376368124,
0.00005944718178346996, 0.20842104700831018,
0.00006224574676266308, 0.20602313659049157,
0.00006437877343232213, 0.20259861495261233,
0.00006758604063277815, 0.20078946886426585,
0.00006936639909688728, 0.19950946540114126,
0.00007060462559901383, 0.19419568100982915,
0.00007203099599317158, 0.19315789072022155,
0.000070702457797849, 0.1915089779620479,
0.00006848623690747524, 0.1877043679595727,
0.0000655582201752986, 0.18552631257617724,
0.00006502581900288756, 0.18319547657564023,
0.00006473633752977752, 0.18022929678918553,
0.0000647164208590649, 0.1778947344321329,
0.00006579061639282816, 0.1759588922222545,
0.00006688264196152569, 0.17169966672487036,
0.000069698027991677, 0.17026315628808858,
0.00007074598227692727, 0.16915083886816806,
0.0000715890703672052, 0.1628570227132409,
0.00007702856693563057, 0.16263157814404428,
0.0000772540665362398, 0.16246575527909798,
0.00007740873598046131, 0.16137952235478703,
0.00007847597621237087, 0.1559371786636851,
0.00008479024550498915, 0.15499999999999997,
0.00008598570939586575, 0.15363429033701548,
0.0000878443636223182, 0.14952784545677286,
0.00009379466248802923, 0.14736842185595564,
0.00009723293672220618, 0.14409481765696008,
0.00010283357787557963, 0.14320049209320487,
0.00010446007275761177, 0.1397368437119113,
0.00011114188215085727, 0.13695884492949673,
0.00011716452189394137, 0.1342348783165591,
0.0001236085720280136, 0.132105265567867,
0.00012901013630317747, 0.13081408303519548,
0.00013246966302280202, 0.1257555540652051,
0.00014737401267806525, 0.12474012191469142,
0.00015065231188607817, 0.12447368742382268,
0.00015155898228429117, 0.12401348239414031,
0.00015308224162798693, 0.11874814063753161,
0.00017249445411395565, 0.11684210927977837,
0.0001805037702493432, 0.11336355547242224,
0.00019641246454919555, 0.11284559191674734,
0.0001989673011140506, 0.10921053113573405,
0.00021817518248477453, 0.10702874939582294,
0.0002311329610459566, 0.10215840142987279,
0.00026383042098478994, 0.10157895299168973,
0.0002681270934084663, 0.10129388671824277,
0.00027032239338430433, 0.10047595146305832,
0.00027676112692193297, 0.09562982481445986,
0.0003180103296691775, 0.09394737484764541,
0.0003344186780080345, 0.09030113499708517,
0.00037399586047134474, 0.09005519546705248,
0.0003768839705616018, 0.08986328810649669,
0.000379268855541332, 0.0863157967036011,
0.0004251992889145789, 0.08458490410208322,
0.00045052187423797835, 0.08046541697403586,
0.0005197437457472359, 0.07922640343258337,
0.0005435420441421504, 0.07868421855955678,
0.0005546081232062334, 0.0772551608358063,
0.0005848415758826891, 0.07400205159764678,
0.0006630728705670156, 0.07105264041551246,
0.0007465819667652495, 0.06890066952772653,
0.0008171453719603333, 0.0648482568169608,
0.000976053119336969, 0.0639297099358539,
0.0010179222593113134, 0.06342106227146814,
0.0010421678651143407, 0.061574652617965235,
0.0011368142898518605, 0.059100351891575864,
0.0012829449507075384, 0.05827869027987578,
0.0013375669973438838, 0.05578948412742382,
0.0015218623255611656, 0.054423774464439335,
0.0016374968051687928, 0.052420857837279254,
0.0018329796165180577, 0.04990743036747559,
0.0021178695173944147, 0.048157905983379504,
0.002355429130050617, 0.045558772313715974,
0.0027773557142080525, 0.04240441152322109,
0.003442245312276653, 0.04138897937270737,
0.0036963942496618823, 0.04052632783933518,
0.003935255900947914, 0.037409230613996765,
0.004997357778414752, 0.034321944240783525,
0.006464366915546581, 0.03363443146364672,
0.006871515294551954, 0.032894749695290854,
0.007340357190916253, 0.03006458192165723,
0.00960980353019457, 0.029078960623268695,
0.010620521351798435, 0.027826904834011422,
0.012139762227223483, 0.02671831377060655,
0.013689720812215192, 0.025263171551246535,
0.016196681390274872, 0.023599353367010308,
0.01987130548360278, 0.022580194859980952,
0.022797874696606883, 0.020711427067384165,
0.029399745399044594, 0.018960039505030245,
0.038365222254596924, 0.018287432153956024,
0.04281328422698936, 0.018065713941275055,
0.04437588266801011, 0.017631593407202217,
0.04774766079357238, 0.01649878102644564,
0.0586706142272511, 0.015658487632167324,
0.06831295475610606, 0.014859184159561115,
0.08040123611056546, 0.013815804335180057,
0.09971036507907274, 0.01348602178354533,
0.1072205750222915, 0.013113386131980664,
0.11676024205927839, 0.012086774911920015,
0.15098955580781592, 0.010000015263157896,
0.2660533148660376, 0.010000015263157896,
0.2835509385911756, 0.010000015263157896,
0.9999987396384276, 0.025263171551246535,
0.9999987396384276, 0.04052632783933518,
0.9999987396384276, 0.05578948412742382,
0.9999987396384276, 0.07105264041551246,
0.9999987396384276, 0.0863157967036011,
0.9999987396384276, 0.10157895299168973,
0.9999987396384276, 0.11684210927977837,
0.9999987396384276, 0.132105265567867,
0.9999987396384276, 0.14736842185595564,
0.9999987396384276, 0.16263157814404428,
0.9999987396384276, 0.1778947344321329,
0.9999987396384276, 0.19315789072022155,
0.9999987396384276, 0.20842104700831018,
0.9999987396384276, 0.22368420329639882,
0.9999987396384276, 0.23894735958448746,
0.9999987396384276, 0.2542105158725761,
0.9999987396384276, 0.2558203018873354,
0.9999987396384276, 0.260569543266527,
0.9002500410979579, 0.2618420940166204,
0.8757957440659601, 0.2640238757565315,
0.8351341545160378, 0.26662114624793726,
0.7901362222306625, 0.26947367216066476,
0.7443493438629281, 0.27036799772442,
0.7297218689571064, 0.2727174655075352,
0.6960563689327807, 0.27423036625288777,
0.6751722139909367, 0.2771052503047091,
0.6371246250347038, 0.27885850104532084,
0.6154467319250959, 0.2842505389234616,
0.5543124325647013, 0.2847368284487534,
0.5493035315917327, 0.2850405265047786,
0.5460174363420693, 0.2863466144635127,
0.532494677170081, 0.28855261752077555,
0.5110636800160765, 0.29126354188590853,
0.48606297039886726, 0.2923684065927977,
0.4762180131823315, 0.29410675190734686,
0.4612906069497988, 0.29751636811916365,
0.43375814254337697, 0.2999999847368421,
0.41514964772736146, 0.2999999847368421,
0.2835509385911756, 0.2999999847368421,
0.08040123611056546, 0.2999999847368421,
0.022797874696606883, 0.2999999847368421,
0.006464366915546581, 0.2999999847368421,
0.0018329796165180577, 0.2999999847368421,
0.0005197437457472359, 0.2999999847368421,
0.00014737401267806525, 0.2999999847368421,
0.00007847597621237087;

data2=0.026421, 0.880102, 0.0268178, 0.746742, 0.0271942,
0.634472, 0.0276739, 0.536112, 0.0280312, 0.47488, 0.0287076,
0.346523, 0.0291455, 0.296601, 0.0295175, 0.253896, 0.0300024,
0.215648, 0.030506, 0.181238, 0.0312802, 0.139177, 0.0319591,
0.119716, 0.0325865, 0.103702, 0.0332548,
0.0900265, 0.0339655, 0.0776198, 0.0344885,
0.0720466, 0.0357332, 0.0539909, 0.0364653,
0.0463016, 0.0372134, 0.0403451, 0.0379443,
0.035113, 0.0387223, 0.0304162, 0.0394182,
0.0275844, 0.0409623, 0.0203708, 0.0420865,
0.0178988, 0.0437596, 0.0155134, 0.0453807,
0.013276, 0.047063, 0.0115048, 0.0485016,
0.0112719, 0.0506136, 0.00833023, 0.0529264,
0.00747158, 0.0559817, 0.00688619, 0.0591538,
0.00619242, 0.0645948, 0.0056801, 0.0626333,
0.00566467, 0.0697434, 0.00456699, 0.0736612,
0.00417951, 0.0772273, 0.00379961, 0.0812595,
0.00349659, 0.0856752, 0.00315671, 0.0889625,
0.00310055, 0.0968806, 0.00250791, 0.102129,
0.00231113, 0.108357, 0.00218765, 0.114647,
0.00207634, 0.121303, 0.0019672, 0.126388,
0.0019222, 0.140037, 0.00170103, 0.148169,
0.00162699, 0.156771, 0.0015433, 0.165872,
0.00146304, 0.175501, 0.00138861, 0.183798,
0.00134368, 0.204696, 0.00118797, 0.216582,
0.00113424, 0.229153, 0.00107144, 0.242455,
0.00101211, 0.256528, 0.000956066, 0.267965,
0.000925368, 0.299199, 0.000814051, 0.316558,
0.000758552, 0.334914, 0.000694366, 0.354334,
0.000635234, 0.374881, 0.000582519, 0.387607,
0.000576501, 0.420909, 0.000451888, 0.441583,
0.000398565, 0.464751, 0.000346267, 0.489135,
0.000301422, 0.509853, 0.000278623, 0.545726,
0.000211186, 0.569648, 0.000185061, 0.593935,
0.000159681, 0.61827, 0.000137351, 0.637911,
0.000119888, 0.67462, 0.0000870067, 0.698866,
0.0000749829, 0.720831, 0.0000640726, 0.739399,
0.0000554034, 0.762664, 0.0000482517, 0.805269,
0.0000347985, 0.825927, 0.0000300192, 0.838617,
0.0000258637, 0.860889, 0.0000222026, 0.879836,
0.0000189785, 0.886325, 0.0000177987, 0.919887,
0.0000133371, 0.93044, 0.0000114575, 0.94442,
9.76004*10^-6, 0.960141, 8.29786*10^-6, 0.977934,
6.98367*10^-6, 0.967144, 6.4857*10^-6, 1.00723,
4.91017*10^-6, 1.01476, 4.25439*10^-6, 1.02665,
3.66046*10^-6, 1.03528, 3.15301*10^-6, 1.04571,
2.73125*10^-6, 1.05629, 2.43485*10^-6, 1.07346,
1.75992*10^-6, 1.08666, 1.50936*10^-6, 1.09757,
1.28898*10^-6, 1.10808, 1.10339*10^-6, 1.10932,
9.40047*10^-7, 1.11468, 8.59312*10^-7, 1.12268,
6.29552*10^-7, 1.13343, 5.25539*10^-7, 1.14154,
4.38902*10^-7, 1.15344, 3.62605*10^-7, 1.17927,
3.16306*10^-7, 1.20399, 2.032*10^-7, 1.19695,
2.42533*10^-7, 1.21411, 2.94621*10^-7, 1.22229,
4.40625*10^-7, 1.22096, 5.31288*10^-7, 1.22468,
7.08256*10^-7, 1.22694, 8.76305*10^-7, 1.20904,
1.30488*10^-6, 1.20948, 1.60216*10^-6, 1.20979,
1.84956*10^-6, 1.2101, 2.13517*10^-6, 1.21041,
2.46487*10^-6, 1.21114, 3.4547*10^-6, 1.21155,
4.16101*10^-6, 1.21186, 4.80354*10^-6, 1.21217,
5.5453*10^-6, 1.20669, 6.84148*10^-6, 1.20692,
8.6485*10^-6, 1.20884, 0.0000106246, 1.21093,
0.0000131545, 1.21286, 0.0000162406, 1.21186,
0.0000202058, 1.21529, 0.0000233107, 1.20996,
0.0000272315, 1.21282, 0.0000314739, 1.21313,
0.000036334, 1.21344, 0.0000419446, 1.21537,
0.0000515103, 1.21748, 0.0000636935, 1.21779,
0.0000735289, 1.2124, 0.0000840811, 1.21529,
0.0000981186, 1.2156, 0.00011327, 1.21592,
0.000130761, 1.21786, 0.000161477, 1.21998,
0.000200909, 1.2146, 0.000230834, 1.21748,
0.000268798, 1.2178, 0.000310305, 1.21811,
0.000358222, 1.22005, 0.000441824, 1.22218,
0.000548959, 1.21679, 0.000633728, 1.21968,
0.000736378, 1.21999, 0.000850087, 1.22031,
0.000981356, 1.22225, 0.00120889, 1.22438,
0.00149996, 1.21899, 0.00173982, 1.22188, 0.00201732, 1.2222,
0.00232883, 1.22251, 0.00268845, 1.22445, 0.00330769, 1.22658,
0.00409847, 1.2212, 0.00477648, 1.22409, 0.0055265, 1.2244,
0.00637989, 1.22472, 0.00736505, 1.22666, 0.00905029, 1.22879,
0.0111986, 1.2291, 0.0129278, 1.22366, 0.014748, 1.22658,
0.0172287, 1.2269, 0.0198891, 1.22721, 0.0229603, 1.23332,
0.0265346, 1.231, 0.0305987, 1.23132, 0.0353237, 1.22588,
0.040489, 1.22879, 0.0471983, 1.22911, 0.0544865, 1.22943,
0.0629002, 1.23139, 0.077628, 1.23353, 0.0965177, 1.22809,
0.111158, 1.23101, 0.129301, 1.23133, 0.149267, 1.23164,
0.172316, 1.23361, 0.212401, 1.23575, 0.263723, 1.23032,
0.30517, 1.23323, 0.354222, 1.23355, 0.40892, 1.23387,
0.472065, 1.23583, 0.581157, 1.23798, 0.720591, 1.23251,
0.82596, 0.026421, 0.880102;









share|improve this question















Consider two sets of data, data1 and data2 (they are given below). If I try to plot them,



ListLogPlot[data1, data2, 
PlotStyle -> Blue, Blue, Joined -> True, Filling -> Automatic]


I will obtain something like this: enter image description here



Is there any way to plot them in a way such that the area of their intersection will be the same color as the areas where they are not intersected? Likely without arbitrary opacity.



data1=0.2999999847368421, 0.00007847597621237087, 0.2999999847368421, 
0.000041788092286919155, 0.2999999847368421,
0.000022251964757397896, 0.2999999847368421,
0.0000220678601151695, 0.2999086890022088,
0.00002208484265800435, 0.299135470025212,
0.000022251964757397896, 0.29305964572645016,
0.000023559042135848565, 0.2923684065927977,
0.000023715417699775446, 0.29149457598987855,
0.00002391694676035076, 0.28622923423326985,
0.000025170342352025765, 0.2847368284487534,
0.000025544864044561507, 0.28283824980403144,
0.00002602887044236093, 0.27941745452266786,
0.00002693325175144503, 0.2771052503047091,
0.000027574767347538766, 0.27414093369651227,
0.00002842332559813959, 0.27262803295115967,
0.00002887289075546239, 0.26947367216066476,
0.000029839338905920736, 0.2674167233640278,
0.000030493723236879715, 0.26585724316222964,
0.00003099987331245628, 0.2653989013108051,
0.00003115287099495151, 0.2618420940166204,
0.00003235951331170112, 0.25910881151239357,
0.000033345050500262494, 0.2566121526469104,
0.00003427085042641089, 0.2542105158725761,
0.000035200684917703386, 0.2523827380016514,
0.000035933924343589724, 0.24776950863528088,
0.00003787531113975004, 0.2465789377285318,
0.000038403409002727274, 0.24567902263000313,
0.000038795354781778083, 0.2427631486565096,
0.00004014331161385088, 0.23939452236636505,
0.000041788092286919155, 0.23900139175396434,
0.000041974956094407755, 0.23894735958448746,
0.00004200725834238921, 0.23887469563243233,
0.00004203958544888939, 0.2323498453735351,
0.000045513079034589037, 0.23131578144044312,
0.000046097997889804963, 0.22991280821230217,
0.000046920871261138605, 0.22572438348871537,
0.00004945584514987175, 0.22368420329639882,
0.00005077423724654412, 0.22088757273140602,
0.00005264359063778916, 0.21912873245602082,
0.000053872622507582905, 0.21605262515235452,
0.000056131722625208974, 0.21256289227545141,
0.00005882848791880944, 0.21178408376368124,
0.00005944718178346996, 0.20842104700831018,
0.00006224574676266308, 0.20602313659049157,
0.00006437877343232213, 0.20259861495261233,
0.00006758604063277815, 0.20078946886426585,
0.00006936639909688728, 0.19950946540114126,
0.00007060462559901383, 0.19419568100982915,
0.00007203099599317158, 0.19315789072022155,
0.000070702457797849, 0.1915089779620479,
0.00006848623690747524, 0.1877043679595727,
0.0000655582201752986, 0.18552631257617724,
0.00006502581900288756, 0.18319547657564023,
0.00006473633752977752, 0.18022929678918553,
0.0000647164208590649, 0.1778947344321329,
0.00006579061639282816, 0.1759588922222545,
0.00006688264196152569, 0.17169966672487036,
0.000069698027991677, 0.17026315628808858,
0.00007074598227692727, 0.16915083886816806,
0.0000715890703672052, 0.1628570227132409,
0.00007702856693563057, 0.16263157814404428,
0.0000772540665362398, 0.16246575527909798,
0.00007740873598046131, 0.16137952235478703,
0.00007847597621237087, 0.1559371786636851,
0.00008479024550498915, 0.15499999999999997,
0.00008598570939586575, 0.15363429033701548,
0.0000878443636223182, 0.14952784545677286,
0.00009379466248802923, 0.14736842185595564,
0.00009723293672220618, 0.14409481765696008,
0.00010283357787557963, 0.14320049209320487,
0.00010446007275761177, 0.1397368437119113,
0.00011114188215085727, 0.13695884492949673,
0.00011716452189394137, 0.1342348783165591,
0.0001236085720280136, 0.132105265567867,
0.00012901013630317747, 0.13081408303519548,
0.00013246966302280202, 0.1257555540652051,
0.00014737401267806525, 0.12474012191469142,
0.00015065231188607817, 0.12447368742382268,
0.00015155898228429117, 0.12401348239414031,
0.00015308224162798693, 0.11874814063753161,
0.00017249445411395565, 0.11684210927977837,
0.0001805037702493432, 0.11336355547242224,
0.00019641246454919555, 0.11284559191674734,
0.0001989673011140506, 0.10921053113573405,
0.00021817518248477453, 0.10702874939582294,
0.0002311329610459566, 0.10215840142987279,
0.00026383042098478994, 0.10157895299168973,
0.0002681270934084663, 0.10129388671824277,
0.00027032239338430433, 0.10047595146305832,
0.00027676112692193297, 0.09562982481445986,
0.0003180103296691775, 0.09394737484764541,
0.0003344186780080345, 0.09030113499708517,
0.00037399586047134474, 0.09005519546705248,
0.0003768839705616018, 0.08986328810649669,
0.000379268855541332, 0.0863157967036011,
0.0004251992889145789, 0.08458490410208322,
0.00045052187423797835, 0.08046541697403586,
0.0005197437457472359, 0.07922640343258337,
0.0005435420441421504, 0.07868421855955678,
0.0005546081232062334, 0.0772551608358063,
0.0005848415758826891, 0.07400205159764678,
0.0006630728705670156, 0.07105264041551246,
0.0007465819667652495, 0.06890066952772653,
0.0008171453719603333, 0.0648482568169608,
0.000976053119336969, 0.0639297099358539,
0.0010179222593113134, 0.06342106227146814,
0.0010421678651143407, 0.061574652617965235,
0.0011368142898518605, 0.059100351891575864,
0.0012829449507075384, 0.05827869027987578,
0.0013375669973438838, 0.05578948412742382,
0.0015218623255611656, 0.054423774464439335,
0.0016374968051687928, 0.052420857837279254,
0.0018329796165180577, 0.04990743036747559,
0.0021178695173944147, 0.048157905983379504,
0.002355429130050617, 0.045558772313715974,
0.0027773557142080525, 0.04240441152322109,
0.003442245312276653, 0.04138897937270737,
0.0036963942496618823, 0.04052632783933518,
0.003935255900947914, 0.037409230613996765,
0.004997357778414752, 0.034321944240783525,
0.006464366915546581, 0.03363443146364672,
0.006871515294551954, 0.032894749695290854,
0.007340357190916253, 0.03006458192165723,
0.00960980353019457, 0.029078960623268695,
0.010620521351798435, 0.027826904834011422,
0.012139762227223483, 0.02671831377060655,
0.013689720812215192, 0.025263171551246535,
0.016196681390274872, 0.023599353367010308,
0.01987130548360278, 0.022580194859980952,
0.022797874696606883, 0.020711427067384165,
0.029399745399044594, 0.018960039505030245,
0.038365222254596924, 0.018287432153956024,
0.04281328422698936, 0.018065713941275055,
0.04437588266801011, 0.017631593407202217,
0.04774766079357238, 0.01649878102644564,
0.0586706142272511, 0.015658487632167324,
0.06831295475610606, 0.014859184159561115,
0.08040123611056546, 0.013815804335180057,
0.09971036507907274, 0.01348602178354533,
0.1072205750222915, 0.013113386131980664,
0.11676024205927839, 0.012086774911920015,
0.15098955580781592, 0.010000015263157896,
0.2660533148660376, 0.010000015263157896,
0.2835509385911756, 0.010000015263157896,
0.9999987396384276, 0.025263171551246535,
0.9999987396384276, 0.04052632783933518,
0.9999987396384276, 0.05578948412742382,
0.9999987396384276, 0.07105264041551246,
0.9999987396384276, 0.0863157967036011,
0.9999987396384276, 0.10157895299168973,
0.9999987396384276, 0.11684210927977837,
0.9999987396384276, 0.132105265567867,
0.9999987396384276, 0.14736842185595564,
0.9999987396384276, 0.16263157814404428,
0.9999987396384276, 0.1778947344321329,
0.9999987396384276, 0.19315789072022155,
0.9999987396384276, 0.20842104700831018,
0.9999987396384276, 0.22368420329639882,
0.9999987396384276, 0.23894735958448746,
0.9999987396384276, 0.2542105158725761,
0.9999987396384276, 0.2558203018873354,
0.9999987396384276, 0.260569543266527,
0.9002500410979579, 0.2618420940166204,
0.8757957440659601, 0.2640238757565315,
0.8351341545160378, 0.26662114624793726,
0.7901362222306625, 0.26947367216066476,
0.7443493438629281, 0.27036799772442,
0.7297218689571064, 0.2727174655075352,
0.6960563689327807, 0.27423036625288777,
0.6751722139909367, 0.2771052503047091,
0.6371246250347038, 0.27885850104532084,
0.6154467319250959, 0.2842505389234616,
0.5543124325647013, 0.2847368284487534,
0.5493035315917327, 0.2850405265047786,
0.5460174363420693, 0.2863466144635127,
0.532494677170081, 0.28855261752077555,
0.5110636800160765, 0.29126354188590853,
0.48606297039886726, 0.2923684065927977,
0.4762180131823315, 0.29410675190734686,
0.4612906069497988, 0.29751636811916365,
0.43375814254337697, 0.2999999847368421,
0.41514964772736146, 0.2999999847368421,
0.2835509385911756, 0.2999999847368421,
0.08040123611056546, 0.2999999847368421,
0.022797874696606883, 0.2999999847368421,
0.006464366915546581, 0.2999999847368421,
0.0018329796165180577, 0.2999999847368421,
0.0005197437457472359, 0.2999999847368421,
0.00014737401267806525, 0.2999999847368421,
0.00007847597621237087;

data2=0.026421, 0.880102, 0.0268178, 0.746742, 0.0271942,
0.634472, 0.0276739, 0.536112, 0.0280312, 0.47488, 0.0287076,
0.346523, 0.0291455, 0.296601, 0.0295175, 0.253896, 0.0300024,
0.215648, 0.030506, 0.181238, 0.0312802, 0.139177, 0.0319591,
0.119716, 0.0325865, 0.103702, 0.0332548,
0.0900265, 0.0339655, 0.0776198, 0.0344885,
0.0720466, 0.0357332, 0.0539909, 0.0364653,
0.0463016, 0.0372134, 0.0403451, 0.0379443,
0.035113, 0.0387223, 0.0304162, 0.0394182,
0.0275844, 0.0409623, 0.0203708, 0.0420865,
0.0178988, 0.0437596, 0.0155134, 0.0453807,
0.013276, 0.047063, 0.0115048, 0.0485016,
0.0112719, 0.0506136, 0.00833023, 0.0529264,
0.00747158, 0.0559817, 0.00688619, 0.0591538,
0.00619242, 0.0645948, 0.0056801, 0.0626333,
0.00566467, 0.0697434, 0.00456699, 0.0736612,
0.00417951, 0.0772273, 0.00379961, 0.0812595,
0.00349659, 0.0856752, 0.00315671, 0.0889625,
0.00310055, 0.0968806, 0.00250791, 0.102129,
0.00231113, 0.108357, 0.00218765, 0.114647,
0.00207634, 0.121303, 0.0019672, 0.126388,
0.0019222, 0.140037, 0.00170103, 0.148169,
0.00162699, 0.156771, 0.0015433, 0.165872,
0.00146304, 0.175501, 0.00138861, 0.183798,
0.00134368, 0.204696, 0.00118797, 0.216582,
0.00113424, 0.229153, 0.00107144, 0.242455,
0.00101211, 0.256528, 0.000956066, 0.267965,
0.000925368, 0.299199, 0.000814051, 0.316558,
0.000758552, 0.334914, 0.000694366, 0.354334,
0.000635234, 0.374881, 0.000582519, 0.387607,
0.000576501, 0.420909, 0.000451888, 0.441583,
0.000398565, 0.464751, 0.000346267, 0.489135,
0.000301422, 0.509853, 0.000278623, 0.545726,
0.000211186, 0.569648, 0.000185061, 0.593935,
0.000159681, 0.61827, 0.000137351, 0.637911,
0.000119888, 0.67462, 0.0000870067, 0.698866,
0.0000749829, 0.720831, 0.0000640726, 0.739399,
0.0000554034, 0.762664, 0.0000482517, 0.805269,
0.0000347985, 0.825927, 0.0000300192, 0.838617,
0.0000258637, 0.860889, 0.0000222026, 0.879836,
0.0000189785, 0.886325, 0.0000177987, 0.919887,
0.0000133371, 0.93044, 0.0000114575, 0.94442,
9.76004*10^-6, 0.960141, 8.29786*10^-6, 0.977934,
6.98367*10^-6, 0.967144, 6.4857*10^-6, 1.00723,
4.91017*10^-6, 1.01476, 4.25439*10^-6, 1.02665,
3.66046*10^-6, 1.03528, 3.15301*10^-6, 1.04571,
2.73125*10^-6, 1.05629, 2.43485*10^-6, 1.07346,
1.75992*10^-6, 1.08666, 1.50936*10^-6, 1.09757,
1.28898*10^-6, 1.10808, 1.10339*10^-6, 1.10932,
9.40047*10^-7, 1.11468, 8.59312*10^-7, 1.12268,
6.29552*10^-7, 1.13343, 5.25539*10^-7, 1.14154,
4.38902*10^-7, 1.15344, 3.62605*10^-7, 1.17927,
3.16306*10^-7, 1.20399, 2.032*10^-7, 1.19695,
2.42533*10^-7, 1.21411, 2.94621*10^-7, 1.22229,
4.40625*10^-7, 1.22096, 5.31288*10^-7, 1.22468,
7.08256*10^-7, 1.22694, 8.76305*10^-7, 1.20904,
1.30488*10^-6, 1.20948, 1.60216*10^-6, 1.20979,
1.84956*10^-6, 1.2101, 2.13517*10^-6, 1.21041,
2.46487*10^-6, 1.21114, 3.4547*10^-6, 1.21155,
4.16101*10^-6, 1.21186, 4.80354*10^-6, 1.21217,
5.5453*10^-6, 1.20669, 6.84148*10^-6, 1.20692,
8.6485*10^-6, 1.20884, 0.0000106246, 1.21093,
0.0000131545, 1.21286, 0.0000162406, 1.21186,
0.0000202058, 1.21529, 0.0000233107, 1.20996,
0.0000272315, 1.21282, 0.0000314739, 1.21313,
0.000036334, 1.21344, 0.0000419446, 1.21537,
0.0000515103, 1.21748, 0.0000636935, 1.21779,
0.0000735289, 1.2124, 0.0000840811, 1.21529,
0.0000981186, 1.2156, 0.00011327, 1.21592,
0.000130761, 1.21786, 0.000161477, 1.21998,
0.000200909, 1.2146, 0.000230834, 1.21748,
0.000268798, 1.2178, 0.000310305, 1.21811,
0.000358222, 1.22005, 0.000441824, 1.22218,
0.000548959, 1.21679, 0.000633728, 1.21968,
0.000736378, 1.21999, 0.000850087, 1.22031,
0.000981356, 1.22225, 0.00120889, 1.22438,
0.00149996, 1.21899, 0.00173982, 1.22188, 0.00201732, 1.2222,
0.00232883, 1.22251, 0.00268845, 1.22445, 0.00330769, 1.22658,
0.00409847, 1.2212, 0.00477648, 1.22409, 0.0055265, 1.2244,
0.00637989, 1.22472, 0.00736505, 1.22666, 0.00905029, 1.22879,
0.0111986, 1.2291, 0.0129278, 1.22366, 0.014748, 1.22658,
0.0172287, 1.2269, 0.0198891, 1.22721, 0.0229603, 1.23332,
0.0265346, 1.231, 0.0305987, 1.23132, 0.0353237, 1.22588,
0.040489, 1.22879, 0.0471983, 1.22911, 0.0544865, 1.22943,
0.0629002, 1.23139, 0.077628, 1.23353, 0.0965177, 1.22809,
0.111158, 1.23101, 0.129301, 1.23133, 0.149267, 1.23164,
0.172316, 1.23361, 0.212401, 1.23575, 0.263723, 1.23032,
0.30517, 1.23323, 0.354222, 1.23355, 0.40892, 1.23387,
0.472065, 1.23583, 0.581157, 1.23798, 0.720591, 1.23251,
0.82596, 0.026421, 0.880102;






plotting data






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 1 hour ago









Emilio Pisanty

5,6842759




5,6842759










asked 3 hours ago









John Taylor

668211




668211







  • 1




    That's really the way two translucent objects interact: stack a number of them and the color will darken. This is mentioned in the docs for Opacity.
    – J. M. is computer-less♦
    3 hours ago












  • 1




    That's really the way two translucent objects interact: stack a number of them and the color will darken. This is mentioned in the docs for Opacity.
    – J. M. is computer-less♦
    3 hours ago







1




1




That's really the way two translucent objects interact: stack a number of them and the color will darken. This is mentioned in the docs for Opacity.
– J. M. is computer-less♦
3 hours ago




That's really the way two translucent objects interact: stack a number of them and the color will darken. This is mentioned in the docs for Opacity.
– J. M. is computer-less♦
3 hours ago










3 Answers
3






active

oldest

votes

















up vote
2
down vote













This can be achieved by providing an explicit full Opacity[1] in the graphics-styling option of the specified Filling:



ListLogPlot[
data1, data2
, PlotStyle -> Blue, Blue
, Joined -> True
, Filling ->
1 -> Top, Directive[Lighter[Blue], Opacity[1]],
2 -> Top, Directive[Lighter[Blue], Opacity[1]]

]


Mathematica graphics






share|improve this answer





























    up vote
    0
    down vote













    rgn1 = Polygon[#[[1]], Log10[#[[2]]] & /@ data1];

    rgn2 = Polygon[#[[1]], Log10[#[[2]]] & /@ data2];

    rgn3 = RegionUnion[rgn1, rgn2];

    RegionPlot[rgn3, AspectRatio -> 1/GoldenRatio,
    FrameLabel -> "x", "Log10[y]"]


    enter image description here



    Or



    Show[
    RegionPlot[rgn3, AspectRatio -> 1/GoldenRatio,
    FrameLabel -> "x", "Log10[y]"],
    Graphics[
    Line[#[[1]], Log10[#[[2]]] & /@ data1],
    Line[#[[1]], Log10[#[[2]]] & /@ data2]]]


    enter image description here






    share|improve this answer





























      up vote
      0
      down vote













       ListLogPlot[data1, data2, Joined -> True, PlotStyle -> Blue, 
      Filling -> Top, FillingStyle -> Opacity[1, LightBlue]]


      enter image description here



      You can also post-process to change the FaceForm of polygons:



      ListLogPlot[data1, data2, Joined -> True, PlotStyle -> Blue, Filling -> Automatic] /.
      p_Polygon:> FaceForm[Opacity[1, LightBlue]], p


      enter image description here





      share




















        Your Answer




        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "387"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        convertImagesToLinks: false,
        noModals: false,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: null,
        bindNavPrevention: true,
        postfix: "",
        onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













         

        draft saved


        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f183851%2fhow-to-plot-two-sets-of-data-with-a-filling-such-that-the-fillings-intersection%23new-answer', 'question_page');

        );

        Post as a guest






























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        2
        down vote













        This can be achieved by providing an explicit full Opacity[1] in the graphics-styling option of the specified Filling:



        ListLogPlot[
        data1, data2
        , PlotStyle -> Blue, Blue
        , Joined -> True
        , Filling ->
        1 -> Top, Directive[Lighter[Blue], Opacity[1]],
        2 -> Top, Directive[Lighter[Blue], Opacity[1]]

        ]


        Mathematica graphics






        share|improve this answer


























          up vote
          2
          down vote













          This can be achieved by providing an explicit full Opacity[1] in the graphics-styling option of the specified Filling:



          ListLogPlot[
          data1, data2
          , PlotStyle -> Blue, Blue
          , Joined -> True
          , Filling ->
          1 -> Top, Directive[Lighter[Blue], Opacity[1]],
          2 -> Top, Directive[Lighter[Blue], Opacity[1]]

          ]


          Mathematica graphics






          share|improve this answer
























            up vote
            2
            down vote










            up vote
            2
            down vote









            This can be achieved by providing an explicit full Opacity[1] in the graphics-styling option of the specified Filling:



            ListLogPlot[
            data1, data2
            , PlotStyle -> Blue, Blue
            , Joined -> True
            , Filling ->
            1 -> Top, Directive[Lighter[Blue], Opacity[1]],
            2 -> Top, Directive[Lighter[Blue], Opacity[1]]

            ]


            Mathematica graphics






            share|improve this answer














            This can be achieved by providing an explicit full Opacity[1] in the graphics-styling option of the specified Filling:



            ListLogPlot[
            data1, data2
            , PlotStyle -> Blue, Blue
            , Joined -> True
            , Filling ->
            1 -> Top, Directive[Lighter[Blue], Opacity[1]],
            2 -> Top, Directive[Lighter[Blue], Opacity[1]]

            ]


            Mathematica graphics







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited 10 mins ago

























            answered 1 hour ago









            Emilio Pisanty

            5,6842759




            5,6842759




















                up vote
                0
                down vote













                rgn1 = Polygon[#[[1]], Log10[#[[2]]] & /@ data1];

                rgn2 = Polygon[#[[1]], Log10[#[[2]]] & /@ data2];

                rgn3 = RegionUnion[rgn1, rgn2];

                RegionPlot[rgn3, AspectRatio -> 1/GoldenRatio,
                FrameLabel -> "x", "Log10[y]"]


                enter image description here



                Or



                Show[
                RegionPlot[rgn3, AspectRatio -> 1/GoldenRatio,
                FrameLabel -> "x", "Log10[y]"],
                Graphics[
                Line[#[[1]], Log10[#[[2]]] & /@ data1],
                Line[#[[1]], Log10[#[[2]]] & /@ data2]]]


                enter image description here






                share|improve this answer


























                  up vote
                  0
                  down vote













                  rgn1 = Polygon[#[[1]], Log10[#[[2]]] & /@ data1];

                  rgn2 = Polygon[#[[1]], Log10[#[[2]]] & /@ data2];

                  rgn3 = RegionUnion[rgn1, rgn2];

                  RegionPlot[rgn3, AspectRatio -> 1/GoldenRatio,
                  FrameLabel -> "x", "Log10[y]"]


                  enter image description here



                  Or



                  Show[
                  RegionPlot[rgn3, AspectRatio -> 1/GoldenRatio,
                  FrameLabel -> "x", "Log10[y]"],
                  Graphics[
                  Line[#[[1]], Log10[#[[2]]] & /@ data1],
                  Line[#[[1]], Log10[#[[2]]] & /@ data2]]]


                  enter image description here






                  share|improve this answer
























                    up vote
                    0
                    down vote










                    up vote
                    0
                    down vote









                    rgn1 = Polygon[#[[1]], Log10[#[[2]]] & /@ data1];

                    rgn2 = Polygon[#[[1]], Log10[#[[2]]] & /@ data2];

                    rgn3 = RegionUnion[rgn1, rgn2];

                    RegionPlot[rgn3, AspectRatio -> 1/GoldenRatio,
                    FrameLabel -> "x", "Log10[y]"]


                    enter image description here



                    Or



                    Show[
                    RegionPlot[rgn3, AspectRatio -> 1/GoldenRatio,
                    FrameLabel -> "x", "Log10[y]"],
                    Graphics[
                    Line[#[[1]], Log10[#[[2]]] & /@ data1],
                    Line[#[[1]], Log10[#[[2]]] & /@ data2]]]


                    enter image description here






                    share|improve this answer














                    rgn1 = Polygon[#[[1]], Log10[#[[2]]] & /@ data1];

                    rgn2 = Polygon[#[[1]], Log10[#[[2]]] & /@ data2];

                    rgn3 = RegionUnion[rgn1, rgn2];

                    RegionPlot[rgn3, AspectRatio -> 1/GoldenRatio,
                    FrameLabel -> "x", "Log10[y]"]


                    enter image description here



                    Or



                    Show[
                    RegionPlot[rgn3, AspectRatio -> 1/GoldenRatio,
                    FrameLabel -> "x", "Log10[y]"],
                    Graphics[
                    Line[#[[1]], Log10[#[[2]]] & /@ data1],
                    Line[#[[1]], Log10[#[[2]]] & /@ data2]]]


                    enter image description here







                    share|improve this answer














                    share|improve this answer



                    share|improve this answer








                    edited 2 hours ago

























                    answered 2 hours ago









                    Bob Hanlon

                    56.3k23590




                    56.3k23590




















                        up vote
                        0
                        down vote













                         ListLogPlot[data1, data2, Joined -> True, PlotStyle -> Blue, 
                        Filling -> Top, FillingStyle -> Opacity[1, LightBlue]]


                        enter image description here



                        You can also post-process to change the FaceForm of polygons:



                        ListLogPlot[data1, data2, Joined -> True, PlotStyle -> Blue, Filling -> Automatic] /.
                        p_Polygon:> FaceForm[Opacity[1, LightBlue]], p


                        enter image description here





                        share
























                          up vote
                          0
                          down vote













                           ListLogPlot[data1, data2, Joined -> True, PlotStyle -> Blue, 
                          Filling -> Top, FillingStyle -> Opacity[1, LightBlue]]


                          enter image description here



                          You can also post-process to change the FaceForm of polygons:



                          ListLogPlot[data1, data2, Joined -> True, PlotStyle -> Blue, Filling -> Automatic] /.
                          p_Polygon:> FaceForm[Opacity[1, LightBlue]], p


                          enter image description here





                          share






















                            up vote
                            0
                            down vote










                            up vote
                            0
                            down vote









                             ListLogPlot[data1, data2, Joined -> True, PlotStyle -> Blue, 
                            Filling -> Top, FillingStyle -> Opacity[1, LightBlue]]


                            enter image description here



                            You can also post-process to change the FaceForm of polygons:



                            ListLogPlot[data1, data2, Joined -> True, PlotStyle -> Blue, Filling -> Automatic] /.
                            p_Polygon:> FaceForm[Opacity[1, LightBlue]], p


                            enter image description here





                            share












                             ListLogPlot[data1, data2, Joined -> True, PlotStyle -> Blue, 
                            Filling -> Top, FillingStyle -> Opacity[1, LightBlue]]


                            enter image description here



                            You can also post-process to change the FaceForm of polygons:



                            ListLogPlot[data1, data2, Joined -> True, PlotStyle -> Blue, Filling -> Automatic] /.
                            p_Polygon:> FaceForm[Opacity[1, LightBlue]], p


                            enter image description here






                            share











                            share


                            share










                            answered 5 mins ago









                            kglr

                            165k8188388




                            165k8188388



























                                 

                                draft saved


                                draft discarded















































                                 


                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f183851%2fhow-to-plot-two-sets-of-data-with-a-filling-such-that-the-fillings-intersection%23new-answer', 'question_page');

                                );

                                Post as a guest













































































                                wdYY1,pSj 8A67f4aAT,K LqQpA7,T7ROJS w2iA,ILb6M,kE4I,4F N,3EklPQZx,9xnQenunguuw89vqf,tl,5 WCc9ZLNkzu
                                MyVIxh

                                Popular posts from this blog

                                How to check contact read email or not when send email to Individual?

                                How many registers does an x86_64 CPU actually have?

                                Displaying single band from multi-band raster using QGIS