Finding limit of a (Laurent?) series
Clash Royale CLAN TAG#URR8PPP
$begingroup$
I've been practicing series for my upcoming Calculus 1 exam, and I've stumbled upon this one:
$1 + frac11 + 2 + frac11 + 2 + 3 + ... + frac11 + 2 + 3 + ... + n$
The task is to find the limit.
sequences-and-series limits
$endgroup$
add a comment |
$begingroup$
I've been practicing series for my upcoming Calculus 1 exam, and I've stumbled upon this one:
$1 + frac11 + 2 + frac11 + 2 + 3 + ... + frac11 + 2 + 3 + ... + n$
The task is to find the limit.
sequences-and-series limits
$endgroup$
add a comment |
$begingroup$
I've been practicing series for my upcoming Calculus 1 exam, and I've stumbled upon this one:
$1 + frac11 + 2 + frac11 + 2 + 3 + ... + frac11 + 2 + 3 + ... + n$
The task is to find the limit.
sequences-and-series limits
$endgroup$
I've been practicing series for my upcoming Calculus 1 exam, and I've stumbled upon this one:
$1 + frac11 + 2 + frac11 + 2 + 3 + ... + frac11 + 2 + 3 + ... + n$
The task is to find the limit.
sequences-and-series limits
sequences-and-series limits
edited Feb 17 at 15:29
Max
631317
631317
asked Feb 17 at 14:25
RoseRose
216
216
add a comment |
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
We have $$1+2+...+k=frack(k+1)2$$
So the sum you need to compute is
$$beginsplit
sum_k=1^n frac 2k(k+1) &= sum_k=1^n 2left ( frac 1 k - frac 1 k+1 right )\
&=2-frac 2 n+1\
&=frac 2n n+1
endsplit$$
Now you can take the limit.
$endgroup$
add a comment |
$begingroup$
Hint: Recall the sum of an arithmetic series of consecutive numbers $1,2, cdots, n$:
$$1+2+cdots+n=fracn(n+1)2$$
Take reciprocal of it and deal with partial fraction, the terms will be eliminated.
$$
frac2n(n+1)=2(frac1n-frac1n+1)$$
After that, take the limit.
$endgroup$
add a comment |
$begingroup$
Hint: Use the fact that $$1+2+...+n=fracn(n+1)2$$
The series then becomes $$2sumlimits_n=1^infty left(frac1n - frac1n+1 right)$$ which is a telescoping series.
$endgroup$
add a comment |
$begingroup$
As $1+2+ldots +n = fracn2(n+1)$ you are looking for the sum of the series
$S = sum_n=1^infty frac1frack2(k+1) = 2 sum_k=1^infty frac1k(k+1)$.
Nos separating you get that $S_n = 2sum_k=1^n frac1k - frac1k+1 = 2(1 - frac1n+1)$. Now taking limit when $n rightarrow infty$ you get that $S=2$
$endgroup$
add a comment |
$begingroup$
$smalla_2=(1+2)^-1, a_3= (1+2+3)^-1,....$
$smalla_k=(1+2+...k)^-1 = 2(k(k+1))^-1=2(1/k -1/(k+1))$
Telescopic sum
$1+sum_k=2^infty a_k =?$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3116293%2ffinding-limit-of-a-laurent-series%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We have $$1+2+...+k=frack(k+1)2$$
So the sum you need to compute is
$$beginsplit
sum_k=1^n frac 2k(k+1) &= sum_k=1^n 2left ( frac 1 k - frac 1 k+1 right )\
&=2-frac 2 n+1\
&=frac 2n n+1
endsplit$$
Now you can take the limit.
$endgroup$
add a comment |
$begingroup$
We have $$1+2+...+k=frack(k+1)2$$
So the sum you need to compute is
$$beginsplit
sum_k=1^n frac 2k(k+1) &= sum_k=1^n 2left ( frac 1 k - frac 1 k+1 right )\
&=2-frac 2 n+1\
&=frac 2n n+1
endsplit$$
Now you can take the limit.
$endgroup$
add a comment |
$begingroup$
We have $$1+2+...+k=frack(k+1)2$$
So the sum you need to compute is
$$beginsplit
sum_k=1^n frac 2k(k+1) &= sum_k=1^n 2left ( frac 1 k - frac 1 k+1 right )\
&=2-frac 2 n+1\
&=frac 2n n+1
endsplit$$
Now you can take the limit.
$endgroup$
We have $$1+2+...+k=frack(k+1)2$$
So the sum you need to compute is
$$beginsplit
sum_k=1^n frac 2k(k+1) &= sum_k=1^n 2left ( frac 1 k - frac 1 k+1 right )\
&=2-frac 2 n+1\
&=frac 2n n+1
endsplit$$
Now you can take the limit.
edited Feb 17 at 19:03
RQM
1213
1213
answered Feb 17 at 14:34
Stefan LafonStefan Lafon
2,92519
2,92519
add a comment |
add a comment |
$begingroup$
Hint: Recall the sum of an arithmetic series of consecutive numbers $1,2, cdots, n$:
$$1+2+cdots+n=fracn(n+1)2$$
Take reciprocal of it and deal with partial fraction, the terms will be eliminated.
$$
frac2n(n+1)=2(frac1n-frac1n+1)$$
After that, take the limit.
$endgroup$
add a comment |
$begingroup$
Hint: Recall the sum of an arithmetic series of consecutive numbers $1,2, cdots, n$:
$$1+2+cdots+n=fracn(n+1)2$$
Take reciprocal of it and deal with partial fraction, the terms will be eliminated.
$$
frac2n(n+1)=2(frac1n-frac1n+1)$$
After that, take the limit.
$endgroup$
add a comment |
$begingroup$
Hint: Recall the sum of an arithmetic series of consecutive numbers $1,2, cdots, n$:
$$1+2+cdots+n=fracn(n+1)2$$
Take reciprocal of it and deal with partial fraction, the terms will be eliminated.
$$
frac2n(n+1)=2(frac1n-frac1n+1)$$
After that, take the limit.
$endgroup$
Hint: Recall the sum of an arithmetic series of consecutive numbers $1,2, cdots, n$:
$$1+2+cdots+n=fracn(n+1)2$$
Take reciprocal of it and deal with partial fraction, the terms will be eliminated.
$$
frac2n(n+1)=2(frac1n-frac1n+1)$$
After that, take the limit.
answered Feb 17 at 14:34
weilam06weilam06
30412
30412
add a comment |
add a comment |
$begingroup$
Hint: Use the fact that $$1+2+...+n=fracn(n+1)2$$
The series then becomes $$2sumlimits_n=1^infty left(frac1n - frac1n+1 right)$$ which is a telescoping series.
$endgroup$
add a comment |
$begingroup$
Hint: Use the fact that $$1+2+...+n=fracn(n+1)2$$
The series then becomes $$2sumlimits_n=1^infty left(frac1n - frac1n+1 right)$$ which is a telescoping series.
$endgroup$
add a comment |
$begingroup$
Hint: Use the fact that $$1+2+...+n=fracn(n+1)2$$
The series then becomes $$2sumlimits_n=1^infty left(frac1n - frac1n+1 right)$$ which is a telescoping series.
$endgroup$
Hint: Use the fact that $$1+2+...+n=fracn(n+1)2$$
The series then becomes $$2sumlimits_n=1^infty left(frac1n - frac1n+1 right)$$ which is a telescoping series.
answered Feb 17 at 14:33
Haris GusicHaris Gusic
2,710423
2,710423
add a comment |
add a comment |
$begingroup$
As $1+2+ldots +n = fracn2(n+1)$ you are looking for the sum of the series
$S = sum_n=1^infty frac1frack2(k+1) = 2 sum_k=1^infty frac1k(k+1)$.
Nos separating you get that $S_n = 2sum_k=1^n frac1k - frac1k+1 = 2(1 - frac1n+1)$. Now taking limit when $n rightarrow infty$ you get that $S=2$
$endgroup$
add a comment |
$begingroup$
As $1+2+ldots +n = fracn2(n+1)$ you are looking for the sum of the series
$S = sum_n=1^infty frac1frack2(k+1) = 2 sum_k=1^infty frac1k(k+1)$.
Nos separating you get that $S_n = 2sum_k=1^n frac1k - frac1k+1 = 2(1 - frac1n+1)$. Now taking limit when $n rightarrow infty$ you get that $S=2$
$endgroup$
add a comment |
$begingroup$
As $1+2+ldots +n = fracn2(n+1)$ you are looking for the sum of the series
$S = sum_n=1^infty frac1frack2(k+1) = 2 sum_k=1^infty frac1k(k+1)$.
Nos separating you get that $S_n = 2sum_k=1^n frac1k - frac1k+1 = 2(1 - frac1n+1)$. Now taking limit when $n rightarrow infty$ you get that $S=2$
$endgroup$
As $1+2+ldots +n = fracn2(n+1)$ you are looking for the sum of the series
$S = sum_n=1^infty frac1frack2(k+1) = 2 sum_k=1^infty frac1k(k+1)$.
Nos separating you get that $S_n = 2sum_k=1^n frac1k - frac1k+1 = 2(1 - frac1n+1)$. Now taking limit when $n rightarrow infty$ you get that $S=2$
answered Feb 17 at 14:36
JoseSquareJoseSquare
867115
867115
add a comment |
add a comment |
$begingroup$
$smalla_2=(1+2)^-1, a_3= (1+2+3)^-1,....$
$smalla_k=(1+2+...k)^-1 = 2(k(k+1))^-1=2(1/k -1/(k+1))$
Telescopic sum
$1+sum_k=2^infty a_k =?$
$endgroup$
add a comment |
$begingroup$
$smalla_2=(1+2)^-1, a_3= (1+2+3)^-1,....$
$smalla_k=(1+2+...k)^-1 = 2(k(k+1))^-1=2(1/k -1/(k+1))$
Telescopic sum
$1+sum_k=2^infty a_k =?$
$endgroup$
add a comment |
$begingroup$
$smalla_2=(1+2)^-1, a_3= (1+2+3)^-1,....$
$smalla_k=(1+2+...k)^-1 = 2(k(k+1))^-1=2(1/k -1/(k+1))$
Telescopic sum
$1+sum_k=2^infty a_k =?$
$endgroup$
$smalla_2=(1+2)^-1, a_3= (1+2+3)^-1,....$
$smalla_k=(1+2+...k)^-1 = 2(k(k+1))^-1=2(1/k -1/(k+1))$
Telescopic sum
$1+sum_k=2^infty a_k =?$
edited Feb 17 at 16:50
answered Feb 17 at 14:38
Peter SzilasPeter Szilas
11.5k2822
11.5k2822
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3116293%2ffinding-limit-of-a-laurent-series%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown