Circles touching path
Clash Royale CLAN TAG#URR8PPP
up vote
5
down vote
favorite
That is what I have so far:
documentclass[tikz,border=3.14mm]standalone
begindocument
usetikzlibraryintersections,decorations
begintikzpicture[thick,
dot/.style =
draw,
fill = black,
circle,
inner sep = 0pt,
minimum size = 2pt
]
draw[smooth cycle, tension=0.6] plot coordinates(-1,-.4) (1.1,-.6) (.9,.5) (-1.1,.5) node at (1,.6) $Omega$;
draw[blue] (-1.1,.5) .. controls (-.5,-.2) and (.5,0) .. coordinate[dot,pos=0.3,black] (A) coordinate[dot,pos=0.5,black] (B) coordinate[dot,pos=0.7,black] (C) coordinate[pos=0.92,black] (D) (1.1,-.6);
draw[gray] (A) circle (.3);
draw[gray] (B) circle (.375) node[black,anchor=north] $x_0$;
node[anchor=south,gray] at ([yshift=10]B) $gamma(barD)$;
draw[gray] (C) circle (.3);
node[blue,anchor=south west] at (D) $S$;
endtikzpicture
enddocument
which looks like
Now, I want to add two dashed lines at each side of S going from the beginning and end of S touching the circles exactly such that each circle stays within.
Something like:
tikz-pgf
add a comment |
up vote
5
down vote
favorite
That is what I have so far:
documentclass[tikz,border=3.14mm]standalone
begindocument
usetikzlibraryintersections,decorations
begintikzpicture[thick,
dot/.style =
draw,
fill = black,
circle,
inner sep = 0pt,
minimum size = 2pt
]
draw[smooth cycle, tension=0.6] plot coordinates(-1,-.4) (1.1,-.6) (.9,.5) (-1.1,.5) node at (1,.6) $Omega$;
draw[blue] (-1.1,.5) .. controls (-.5,-.2) and (.5,0) .. coordinate[dot,pos=0.3,black] (A) coordinate[dot,pos=0.5,black] (B) coordinate[dot,pos=0.7,black] (C) coordinate[pos=0.92,black] (D) (1.1,-.6);
draw[gray] (A) circle (.3);
draw[gray] (B) circle (.375) node[black,anchor=north] $x_0$;
node[anchor=south,gray] at ([yshift=10]B) $gamma(barD)$;
draw[gray] (C) circle (.3);
node[blue,anchor=south west] at (D) $S$;
endtikzpicture
enddocument
which looks like
Now, I want to add two dashed lines at each side of S going from the beginning and end of S touching the circles exactly such that each circle stays within.
Something like:
tikz-pgf
There is abegindocument
missing,graphicblue
is not a color defined in your MWE and you might want to reword the question such that it becomes clearer.
– marmot
Nov 27 at 14:49
add a comment |
up vote
5
down vote
favorite
up vote
5
down vote
favorite
That is what I have so far:
documentclass[tikz,border=3.14mm]standalone
begindocument
usetikzlibraryintersections,decorations
begintikzpicture[thick,
dot/.style =
draw,
fill = black,
circle,
inner sep = 0pt,
minimum size = 2pt
]
draw[smooth cycle, tension=0.6] plot coordinates(-1,-.4) (1.1,-.6) (.9,.5) (-1.1,.5) node at (1,.6) $Omega$;
draw[blue] (-1.1,.5) .. controls (-.5,-.2) and (.5,0) .. coordinate[dot,pos=0.3,black] (A) coordinate[dot,pos=0.5,black] (B) coordinate[dot,pos=0.7,black] (C) coordinate[pos=0.92,black] (D) (1.1,-.6);
draw[gray] (A) circle (.3);
draw[gray] (B) circle (.375) node[black,anchor=north] $x_0$;
node[anchor=south,gray] at ([yshift=10]B) $gamma(barD)$;
draw[gray] (C) circle (.3);
node[blue,anchor=south west] at (D) $S$;
endtikzpicture
enddocument
which looks like
Now, I want to add two dashed lines at each side of S going from the beginning and end of S touching the circles exactly such that each circle stays within.
Something like:
tikz-pgf
That is what I have so far:
documentclass[tikz,border=3.14mm]standalone
begindocument
usetikzlibraryintersections,decorations
begintikzpicture[thick,
dot/.style =
draw,
fill = black,
circle,
inner sep = 0pt,
minimum size = 2pt
]
draw[smooth cycle, tension=0.6] plot coordinates(-1,-.4) (1.1,-.6) (.9,.5) (-1.1,.5) node at (1,.6) $Omega$;
draw[blue] (-1.1,.5) .. controls (-.5,-.2) and (.5,0) .. coordinate[dot,pos=0.3,black] (A) coordinate[dot,pos=0.5,black] (B) coordinate[dot,pos=0.7,black] (C) coordinate[pos=0.92,black] (D) (1.1,-.6);
draw[gray] (A) circle (.3);
draw[gray] (B) circle (.375) node[black,anchor=north] $x_0$;
node[anchor=south,gray] at ([yshift=10]B) $gamma(barD)$;
draw[gray] (C) circle (.3);
node[blue,anchor=south west] at (D) $S$;
endtikzpicture
enddocument
which looks like
Now, I want to add two dashed lines at each side of S going from the beginning and end of S touching the circles exactly such that each circle stays within.
Something like:
tikz-pgf
tikz-pgf
edited Nov 27 at 14:53
asked Nov 27 at 14:33
YoungMath
585
585
There is abegindocument
missing,graphicblue
is not a color defined in your MWE and you might want to reword the question such that it becomes clearer.
– marmot
Nov 27 at 14:49
add a comment |
There is abegindocument
missing,graphicblue
is not a color defined in your MWE and you might want to reword the question such that it becomes clearer.
– marmot
Nov 27 at 14:49
There is a
begindocument
missing, graphicblue
is not a color defined in your MWE and you might want to reword the question such that it becomes clearer.– marmot
Nov 27 at 14:49
There is a
begindocument
missing, graphicblue
is not a color defined in your MWE and you might want to reword the question such that it becomes clearer.– marmot
Nov 27 at 14:49
add a comment |
2 Answers
2
active
oldest
votes
up vote
3
down vote
UPDATE: Using tangents, see e.g. this nice answer.
documentclass[tikz,border=3.14mm]standalone
usetikzlibrarycalc
begindocument
begintikzpicture[thick,
dot/.style =
draw,
fill = black,
circle,
inner sep = 0pt,
minimum size = 2pt
]
draw[smooth cycle, tension=0.6] plot coordinates(-1,-.4) (1.1,-.6) (.9,.5) (-1.1,.5) node at (1,.6) $Omega$;
draw[blue] (-1.1,.5) coordinate(start) .. controls (-.5,-.2) and (.5,0) ..
coordinate[dot,pos=0.3,black] (A) coordinate[dot,pos=0.5,black] (B)
node[black,anchor=north] $x_0$ coordinate[dot,pos=0.7,black] (C) coordinate[pos=0.92,black] (D) (1.1,-.6)
coordinate(end);
% see https://tex.stackexchange.com/a/76226/121799
pgfmathsetmacrorsmall0.6
pgfmathsetmacrorbig0.75
node [draw=gray,circle,minimum size=rsmall*1cm] (cA) at (A);
node [draw=gray,circle,minimum size=rbig*1cm] (cB) at (B);
node[anchor=south,gray] at ([yshift=10]B) $gamma(barD)$;
node [draw=gray,circle,minimum size=rsmall*1cm] (cC) at (C);
node[blue,anchor=south west] at (D) $S$;
beginscope[overlay] % see https://tex.stackexchange.com/a/76226/121799
coordinate (cAB) at (barycentric cs:B=-rsmall,A=rbig);
coordinate (cCB) at (barycentric cs:B=-rsmall,C=rbig);
endscope
foreach Y in 1,2
foreach X in A,C
path (tangent cs:node=cX,point=(cX B),solution=Y) coordinate(pBX-Y)
(tangent cs:node=cB,point=(cX B),solution=Y) coordinate(pX B-Y);
path (tangent cs:node=cA,point=(start),solution=Y) coordinate(pstartA-Y)
(tangent cs:node=cC,point=(end),solution=Y) coordinate(pendC-Y);
draw[red,dashed] plot[smooth] coordinates (start) (pstartA-2) (pBA-2) (pAB-2) (pCB-1) (pBC-1)
(pendC-1) (end);
draw[red,dashed] plot[smooth] coordinates (start) (pstartA-1) (pBA-1) (pAB-1) (pCB-2) (pBC-2)
(pendC-2) (end);
endtikzpicture
enddocument
OLDER ANSWER: You started drawing this with Bezier curves (which I may not necessarily have done), so perhaps the best way is to continue this strategy. Yet I think it helps to make the circles nodes such that you can easily access the points on their peripheries.
documentclass[tikz,border=3.14mm]standalone
begindocument
begintikzpicture[thick,
dot/.style =
draw,
fill = black,
circle,
inner sep = 0pt,
minimum size = 2pt
]
draw[smooth cycle, tension=0.6] plot coordinates(-1,-.4) (1.1,-.6) (.9,.5) (-1.1,.5) node at (1,.6) $Omega$;
draw[blue] (-1.1,.5) .. controls (-.5,-.2) and (.5,0) ..
coordinate[dot,pos=0.3,black] (A) coordinate[dot,pos=0.5,black] (B)
node[black,anchor=north] $x_0$ coordinate[dot,pos=0.7,black] (C) coordinate[pos=0.92,black] (D) (1.1,-.6);
node [draw=gray,circle,minimum size=0.6cm] (cA) at (A);
node [draw=gray,circle,minimum size=0.75cm] (cB) at (B);
node[anchor=south,gray] at ([yshift=10]B) $gamma(barD)$;
node [draw=gray,circle,minimum size=0.6cm] (cC) at (C);
node[blue,anchor=south west] at (D) $S$;
draw[red,dashed] (-1.1,0.5) to[out=-20,in=190] (cA.110)
to[out=10,in=170] (cB.90) to[out=-10,in=170] (cC.80) to[out=-10,in=150] (1.1,-.6);
draw[red,dashed] (-1.1,0.5) to[out=-50,in=150] (cA.250)
to[out=-20,in=180] (cB.270) to[out=00,in=190] (cC.280) to[out=10,in=180] (1.1,-.6);
endtikzpicture
enddocument
add a comment |
up vote
1
down vote
An empirical solution:
documentclass[tikz,border=3.14mm]standalone
begindocument
begintikzpicture[thin,
dot/.style =
draw,
fill = black,
circle,
inner sep = 0pt,
minimum size = 2pt
]
draw[smooth cycle, tension=0.6] plot coordinates(-1,-.4) (1.1,-.6) (.9,.5) (-1.1,.5) node at (1,.6) $Omega$;
draw[blue] (-1.1,.5)coordinate(s1) .. controls (-.5,-.2) and (.5,0) .. coordinate[dot,pos=0.3,black] (A) coordinate[dot,pos=0.5,black] (B) node[black,below]$x_0$ coordinate[dot,pos=0.7,black] (C) coordinate[pos=0.92,black] (D) (1.1,-.6)coordinate(s2);
draw (A) node[draw,minimum size=0.52cm,circle] (C1);
draw (B) node[draw,minimum size=0.65cm,circle] (C2);
draw (C) node[draw,minimum size=0.52cm,circle] (C3);
node[blue,anchor=south west] at (D) $S$;
node[anchor=south,gray] at ([yshift=10]B) $gamma(barD)$;
draw[dashed,smooth, tension=0.5] plot coordinates(s1) (C1.87) (C2.85) (C3.60) (s2);
draw[dashed,smooth, tension=0.5] plot coordinates(s2) (C3.267) (C2.270) (C1.240) (s1);
endtikzpicture
enddocument
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
UPDATE: Using tangents, see e.g. this nice answer.
documentclass[tikz,border=3.14mm]standalone
usetikzlibrarycalc
begindocument
begintikzpicture[thick,
dot/.style =
draw,
fill = black,
circle,
inner sep = 0pt,
minimum size = 2pt
]
draw[smooth cycle, tension=0.6] plot coordinates(-1,-.4) (1.1,-.6) (.9,.5) (-1.1,.5) node at (1,.6) $Omega$;
draw[blue] (-1.1,.5) coordinate(start) .. controls (-.5,-.2) and (.5,0) ..
coordinate[dot,pos=0.3,black] (A) coordinate[dot,pos=0.5,black] (B)
node[black,anchor=north] $x_0$ coordinate[dot,pos=0.7,black] (C) coordinate[pos=0.92,black] (D) (1.1,-.6)
coordinate(end);
% see https://tex.stackexchange.com/a/76226/121799
pgfmathsetmacrorsmall0.6
pgfmathsetmacrorbig0.75
node [draw=gray,circle,minimum size=rsmall*1cm] (cA) at (A);
node [draw=gray,circle,minimum size=rbig*1cm] (cB) at (B);
node[anchor=south,gray] at ([yshift=10]B) $gamma(barD)$;
node [draw=gray,circle,minimum size=rsmall*1cm] (cC) at (C);
node[blue,anchor=south west] at (D) $S$;
beginscope[overlay] % see https://tex.stackexchange.com/a/76226/121799
coordinate (cAB) at (barycentric cs:B=-rsmall,A=rbig);
coordinate (cCB) at (barycentric cs:B=-rsmall,C=rbig);
endscope
foreach Y in 1,2
foreach X in A,C
path (tangent cs:node=cX,point=(cX B),solution=Y) coordinate(pBX-Y)
(tangent cs:node=cB,point=(cX B),solution=Y) coordinate(pX B-Y);
path (tangent cs:node=cA,point=(start),solution=Y) coordinate(pstartA-Y)
(tangent cs:node=cC,point=(end),solution=Y) coordinate(pendC-Y);
draw[red,dashed] plot[smooth] coordinates (start) (pstartA-2) (pBA-2) (pAB-2) (pCB-1) (pBC-1)
(pendC-1) (end);
draw[red,dashed] plot[smooth] coordinates (start) (pstartA-1) (pBA-1) (pAB-1) (pCB-2) (pBC-2)
(pendC-2) (end);
endtikzpicture
enddocument
OLDER ANSWER: You started drawing this with Bezier curves (which I may not necessarily have done), so perhaps the best way is to continue this strategy. Yet I think it helps to make the circles nodes such that you can easily access the points on their peripheries.
documentclass[tikz,border=3.14mm]standalone
begindocument
begintikzpicture[thick,
dot/.style =
draw,
fill = black,
circle,
inner sep = 0pt,
minimum size = 2pt
]
draw[smooth cycle, tension=0.6] plot coordinates(-1,-.4) (1.1,-.6) (.9,.5) (-1.1,.5) node at (1,.6) $Omega$;
draw[blue] (-1.1,.5) .. controls (-.5,-.2) and (.5,0) ..
coordinate[dot,pos=0.3,black] (A) coordinate[dot,pos=0.5,black] (B)
node[black,anchor=north] $x_0$ coordinate[dot,pos=0.7,black] (C) coordinate[pos=0.92,black] (D) (1.1,-.6);
node [draw=gray,circle,minimum size=0.6cm] (cA) at (A);
node [draw=gray,circle,minimum size=0.75cm] (cB) at (B);
node[anchor=south,gray] at ([yshift=10]B) $gamma(barD)$;
node [draw=gray,circle,minimum size=0.6cm] (cC) at (C);
node[blue,anchor=south west] at (D) $S$;
draw[red,dashed] (-1.1,0.5) to[out=-20,in=190] (cA.110)
to[out=10,in=170] (cB.90) to[out=-10,in=170] (cC.80) to[out=-10,in=150] (1.1,-.6);
draw[red,dashed] (-1.1,0.5) to[out=-50,in=150] (cA.250)
to[out=-20,in=180] (cB.270) to[out=00,in=190] (cC.280) to[out=10,in=180] (1.1,-.6);
endtikzpicture
enddocument
add a comment |
up vote
3
down vote
UPDATE: Using tangents, see e.g. this nice answer.
documentclass[tikz,border=3.14mm]standalone
usetikzlibrarycalc
begindocument
begintikzpicture[thick,
dot/.style =
draw,
fill = black,
circle,
inner sep = 0pt,
minimum size = 2pt
]
draw[smooth cycle, tension=0.6] plot coordinates(-1,-.4) (1.1,-.6) (.9,.5) (-1.1,.5) node at (1,.6) $Omega$;
draw[blue] (-1.1,.5) coordinate(start) .. controls (-.5,-.2) and (.5,0) ..
coordinate[dot,pos=0.3,black] (A) coordinate[dot,pos=0.5,black] (B)
node[black,anchor=north] $x_0$ coordinate[dot,pos=0.7,black] (C) coordinate[pos=0.92,black] (D) (1.1,-.6)
coordinate(end);
% see https://tex.stackexchange.com/a/76226/121799
pgfmathsetmacrorsmall0.6
pgfmathsetmacrorbig0.75
node [draw=gray,circle,minimum size=rsmall*1cm] (cA) at (A);
node [draw=gray,circle,minimum size=rbig*1cm] (cB) at (B);
node[anchor=south,gray] at ([yshift=10]B) $gamma(barD)$;
node [draw=gray,circle,minimum size=rsmall*1cm] (cC) at (C);
node[blue,anchor=south west] at (D) $S$;
beginscope[overlay] % see https://tex.stackexchange.com/a/76226/121799
coordinate (cAB) at (barycentric cs:B=-rsmall,A=rbig);
coordinate (cCB) at (barycentric cs:B=-rsmall,C=rbig);
endscope
foreach Y in 1,2
foreach X in A,C
path (tangent cs:node=cX,point=(cX B),solution=Y) coordinate(pBX-Y)
(tangent cs:node=cB,point=(cX B),solution=Y) coordinate(pX B-Y);
path (tangent cs:node=cA,point=(start),solution=Y) coordinate(pstartA-Y)
(tangent cs:node=cC,point=(end),solution=Y) coordinate(pendC-Y);
draw[red,dashed] plot[smooth] coordinates (start) (pstartA-2) (pBA-2) (pAB-2) (pCB-1) (pBC-1)
(pendC-1) (end);
draw[red,dashed] plot[smooth] coordinates (start) (pstartA-1) (pBA-1) (pAB-1) (pCB-2) (pBC-2)
(pendC-2) (end);
endtikzpicture
enddocument
OLDER ANSWER: You started drawing this with Bezier curves (which I may not necessarily have done), so perhaps the best way is to continue this strategy. Yet I think it helps to make the circles nodes such that you can easily access the points on their peripheries.
documentclass[tikz,border=3.14mm]standalone
begindocument
begintikzpicture[thick,
dot/.style =
draw,
fill = black,
circle,
inner sep = 0pt,
minimum size = 2pt
]
draw[smooth cycle, tension=0.6] plot coordinates(-1,-.4) (1.1,-.6) (.9,.5) (-1.1,.5) node at (1,.6) $Omega$;
draw[blue] (-1.1,.5) .. controls (-.5,-.2) and (.5,0) ..
coordinate[dot,pos=0.3,black] (A) coordinate[dot,pos=0.5,black] (B)
node[black,anchor=north] $x_0$ coordinate[dot,pos=0.7,black] (C) coordinate[pos=0.92,black] (D) (1.1,-.6);
node [draw=gray,circle,minimum size=0.6cm] (cA) at (A);
node [draw=gray,circle,minimum size=0.75cm] (cB) at (B);
node[anchor=south,gray] at ([yshift=10]B) $gamma(barD)$;
node [draw=gray,circle,minimum size=0.6cm] (cC) at (C);
node[blue,anchor=south west] at (D) $S$;
draw[red,dashed] (-1.1,0.5) to[out=-20,in=190] (cA.110)
to[out=10,in=170] (cB.90) to[out=-10,in=170] (cC.80) to[out=-10,in=150] (1.1,-.6);
draw[red,dashed] (-1.1,0.5) to[out=-50,in=150] (cA.250)
to[out=-20,in=180] (cB.270) to[out=00,in=190] (cC.280) to[out=10,in=180] (1.1,-.6);
endtikzpicture
enddocument
add a comment |
up vote
3
down vote
up vote
3
down vote
UPDATE: Using tangents, see e.g. this nice answer.
documentclass[tikz,border=3.14mm]standalone
usetikzlibrarycalc
begindocument
begintikzpicture[thick,
dot/.style =
draw,
fill = black,
circle,
inner sep = 0pt,
minimum size = 2pt
]
draw[smooth cycle, tension=0.6] plot coordinates(-1,-.4) (1.1,-.6) (.9,.5) (-1.1,.5) node at (1,.6) $Omega$;
draw[blue] (-1.1,.5) coordinate(start) .. controls (-.5,-.2) and (.5,0) ..
coordinate[dot,pos=0.3,black] (A) coordinate[dot,pos=0.5,black] (B)
node[black,anchor=north] $x_0$ coordinate[dot,pos=0.7,black] (C) coordinate[pos=0.92,black] (D) (1.1,-.6)
coordinate(end);
% see https://tex.stackexchange.com/a/76226/121799
pgfmathsetmacrorsmall0.6
pgfmathsetmacrorbig0.75
node [draw=gray,circle,minimum size=rsmall*1cm] (cA) at (A);
node [draw=gray,circle,minimum size=rbig*1cm] (cB) at (B);
node[anchor=south,gray] at ([yshift=10]B) $gamma(barD)$;
node [draw=gray,circle,minimum size=rsmall*1cm] (cC) at (C);
node[blue,anchor=south west] at (D) $S$;
beginscope[overlay] % see https://tex.stackexchange.com/a/76226/121799
coordinate (cAB) at (barycentric cs:B=-rsmall,A=rbig);
coordinate (cCB) at (barycentric cs:B=-rsmall,C=rbig);
endscope
foreach Y in 1,2
foreach X in A,C
path (tangent cs:node=cX,point=(cX B),solution=Y) coordinate(pBX-Y)
(tangent cs:node=cB,point=(cX B),solution=Y) coordinate(pX B-Y);
path (tangent cs:node=cA,point=(start),solution=Y) coordinate(pstartA-Y)
(tangent cs:node=cC,point=(end),solution=Y) coordinate(pendC-Y);
draw[red,dashed] plot[smooth] coordinates (start) (pstartA-2) (pBA-2) (pAB-2) (pCB-1) (pBC-1)
(pendC-1) (end);
draw[red,dashed] plot[smooth] coordinates (start) (pstartA-1) (pBA-1) (pAB-1) (pCB-2) (pBC-2)
(pendC-2) (end);
endtikzpicture
enddocument
OLDER ANSWER: You started drawing this with Bezier curves (which I may not necessarily have done), so perhaps the best way is to continue this strategy. Yet I think it helps to make the circles nodes such that you can easily access the points on their peripheries.
documentclass[tikz,border=3.14mm]standalone
begindocument
begintikzpicture[thick,
dot/.style =
draw,
fill = black,
circle,
inner sep = 0pt,
minimum size = 2pt
]
draw[smooth cycle, tension=0.6] plot coordinates(-1,-.4) (1.1,-.6) (.9,.5) (-1.1,.5) node at (1,.6) $Omega$;
draw[blue] (-1.1,.5) .. controls (-.5,-.2) and (.5,0) ..
coordinate[dot,pos=0.3,black] (A) coordinate[dot,pos=0.5,black] (B)
node[black,anchor=north] $x_0$ coordinate[dot,pos=0.7,black] (C) coordinate[pos=0.92,black] (D) (1.1,-.6);
node [draw=gray,circle,minimum size=0.6cm] (cA) at (A);
node [draw=gray,circle,minimum size=0.75cm] (cB) at (B);
node[anchor=south,gray] at ([yshift=10]B) $gamma(barD)$;
node [draw=gray,circle,minimum size=0.6cm] (cC) at (C);
node[blue,anchor=south west] at (D) $S$;
draw[red,dashed] (-1.1,0.5) to[out=-20,in=190] (cA.110)
to[out=10,in=170] (cB.90) to[out=-10,in=170] (cC.80) to[out=-10,in=150] (1.1,-.6);
draw[red,dashed] (-1.1,0.5) to[out=-50,in=150] (cA.250)
to[out=-20,in=180] (cB.270) to[out=00,in=190] (cC.280) to[out=10,in=180] (1.1,-.6);
endtikzpicture
enddocument
UPDATE: Using tangents, see e.g. this nice answer.
documentclass[tikz,border=3.14mm]standalone
usetikzlibrarycalc
begindocument
begintikzpicture[thick,
dot/.style =
draw,
fill = black,
circle,
inner sep = 0pt,
minimum size = 2pt
]
draw[smooth cycle, tension=0.6] plot coordinates(-1,-.4) (1.1,-.6) (.9,.5) (-1.1,.5) node at (1,.6) $Omega$;
draw[blue] (-1.1,.5) coordinate(start) .. controls (-.5,-.2) and (.5,0) ..
coordinate[dot,pos=0.3,black] (A) coordinate[dot,pos=0.5,black] (B)
node[black,anchor=north] $x_0$ coordinate[dot,pos=0.7,black] (C) coordinate[pos=0.92,black] (D) (1.1,-.6)
coordinate(end);
% see https://tex.stackexchange.com/a/76226/121799
pgfmathsetmacrorsmall0.6
pgfmathsetmacrorbig0.75
node [draw=gray,circle,minimum size=rsmall*1cm] (cA) at (A);
node [draw=gray,circle,minimum size=rbig*1cm] (cB) at (B);
node[anchor=south,gray] at ([yshift=10]B) $gamma(barD)$;
node [draw=gray,circle,minimum size=rsmall*1cm] (cC) at (C);
node[blue,anchor=south west] at (D) $S$;
beginscope[overlay] % see https://tex.stackexchange.com/a/76226/121799
coordinate (cAB) at (barycentric cs:B=-rsmall,A=rbig);
coordinate (cCB) at (barycentric cs:B=-rsmall,C=rbig);
endscope
foreach Y in 1,2
foreach X in A,C
path (tangent cs:node=cX,point=(cX B),solution=Y) coordinate(pBX-Y)
(tangent cs:node=cB,point=(cX B),solution=Y) coordinate(pX B-Y);
path (tangent cs:node=cA,point=(start),solution=Y) coordinate(pstartA-Y)
(tangent cs:node=cC,point=(end),solution=Y) coordinate(pendC-Y);
draw[red,dashed] plot[smooth] coordinates (start) (pstartA-2) (pBA-2) (pAB-2) (pCB-1) (pBC-1)
(pendC-1) (end);
draw[red,dashed] plot[smooth] coordinates (start) (pstartA-1) (pBA-1) (pAB-1) (pCB-2) (pBC-2)
(pendC-2) (end);
endtikzpicture
enddocument
OLDER ANSWER: You started drawing this with Bezier curves (which I may not necessarily have done), so perhaps the best way is to continue this strategy. Yet I think it helps to make the circles nodes such that you can easily access the points on their peripheries.
documentclass[tikz,border=3.14mm]standalone
begindocument
begintikzpicture[thick,
dot/.style =
draw,
fill = black,
circle,
inner sep = 0pt,
minimum size = 2pt
]
draw[smooth cycle, tension=0.6] plot coordinates(-1,-.4) (1.1,-.6) (.9,.5) (-1.1,.5) node at (1,.6) $Omega$;
draw[blue] (-1.1,.5) .. controls (-.5,-.2) and (.5,0) ..
coordinate[dot,pos=0.3,black] (A) coordinate[dot,pos=0.5,black] (B)
node[black,anchor=north] $x_0$ coordinate[dot,pos=0.7,black] (C) coordinate[pos=0.92,black] (D) (1.1,-.6);
node [draw=gray,circle,minimum size=0.6cm] (cA) at (A);
node [draw=gray,circle,minimum size=0.75cm] (cB) at (B);
node[anchor=south,gray] at ([yshift=10]B) $gamma(barD)$;
node [draw=gray,circle,minimum size=0.6cm] (cC) at (C);
node[blue,anchor=south west] at (D) $S$;
draw[red,dashed] (-1.1,0.5) to[out=-20,in=190] (cA.110)
to[out=10,in=170] (cB.90) to[out=-10,in=170] (cC.80) to[out=-10,in=150] (1.1,-.6);
draw[red,dashed] (-1.1,0.5) to[out=-50,in=150] (cA.250)
to[out=-20,in=180] (cB.270) to[out=00,in=190] (cC.280) to[out=10,in=180] (1.1,-.6);
endtikzpicture
enddocument
edited Nov 27 at 17:09
answered Nov 27 at 14:47
marmot
80.9k491173
80.9k491173
add a comment |
add a comment |
up vote
1
down vote
An empirical solution:
documentclass[tikz,border=3.14mm]standalone
begindocument
begintikzpicture[thin,
dot/.style =
draw,
fill = black,
circle,
inner sep = 0pt,
minimum size = 2pt
]
draw[smooth cycle, tension=0.6] plot coordinates(-1,-.4) (1.1,-.6) (.9,.5) (-1.1,.5) node at (1,.6) $Omega$;
draw[blue] (-1.1,.5)coordinate(s1) .. controls (-.5,-.2) and (.5,0) .. coordinate[dot,pos=0.3,black] (A) coordinate[dot,pos=0.5,black] (B) node[black,below]$x_0$ coordinate[dot,pos=0.7,black] (C) coordinate[pos=0.92,black] (D) (1.1,-.6)coordinate(s2);
draw (A) node[draw,minimum size=0.52cm,circle] (C1);
draw (B) node[draw,minimum size=0.65cm,circle] (C2);
draw (C) node[draw,minimum size=0.52cm,circle] (C3);
node[blue,anchor=south west] at (D) $S$;
node[anchor=south,gray] at ([yshift=10]B) $gamma(barD)$;
draw[dashed,smooth, tension=0.5] plot coordinates(s1) (C1.87) (C2.85) (C3.60) (s2);
draw[dashed,smooth, tension=0.5] plot coordinates(s2) (C3.267) (C2.270) (C1.240) (s1);
endtikzpicture
enddocument
add a comment |
up vote
1
down vote
An empirical solution:
documentclass[tikz,border=3.14mm]standalone
begindocument
begintikzpicture[thin,
dot/.style =
draw,
fill = black,
circle,
inner sep = 0pt,
minimum size = 2pt
]
draw[smooth cycle, tension=0.6] plot coordinates(-1,-.4) (1.1,-.6) (.9,.5) (-1.1,.5) node at (1,.6) $Omega$;
draw[blue] (-1.1,.5)coordinate(s1) .. controls (-.5,-.2) and (.5,0) .. coordinate[dot,pos=0.3,black] (A) coordinate[dot,pos=0.5,black] (B) node[black,below]$x_0$ coordinate[dot,pos=0.7,black] (C) coordinate[pos=0.92,black] (D) (1.1,-.6)coordinate(s2);
draw (A) node[draw,minimum size=0.52cm,circle] (C1);
draw (B) node[draw,minimum size=0.65cm,circle] (C2);
draw (C) node[draw,minimum size=0.52cm,circle] (C3);
node[blue,anchor=south west] at (D) $S$;
node[anchor=south,gray] at ([yshift=10]B) $gamma(barD)$;
draw[dashed,smooth, tension=0.5] plot coordinates(s1) (C1.87) (C2.85) (C3.60) (s2);
draw[dashed,smooth, tension=0.5] plot coordinates(s2) (C3.267) (C2.270) (C1.240) (s1);
endtikzpicture
enddocument
add a comment |
up vote
1
down vote
up vote
1
down vote
An empirical solution:
documentclass[tikz,border=3.14mm]standalone
begindocument
begintikzpicture[thin,
dot/.style =
draw,
fill = black,
circle,
inner sep = 0pt,
minimum size = 2pt
]
draw[smooth cycle, tension=0.6] plot coordinates(-1,-.4) (1.1,-.6) (.9,.5) (-1.1,.5) node at (1,.6) $Omega$;
draw[blue] (-1.1,.5)coordinate(s1) .. controls (-.5,-.2) and (.5,0) .. coordinate[dot,pos=0.3,black] (A) coordinate[dot,pos=0.5,black] (B) node[black,below]$x_0$ coordinate[dot,pos=0.7,black] (C) coordinate[pos=0.92,black] (D) (1.1,-.6)coordinate(s2);
draw (A) node[draw,minimum size=0.52cm,circle] (C1);
draw (B) node[draw,minimum size=0.65cm,circle] (C2);
draw (C) node[draw,minimum size=0.52cm,circle] (C3);
node[blue,anchor=south west] at (D) $S$;
node[anchor=south,gray] at ([yshift=10]B) $gamma(barD)$;
draw[dashed,smooth, tension=0.5] plot coordinates(s1) (C1.87) (C2.85) (C3.60) (s2);
draw[dashed,smooth, tension=0.5] plot coordinates(s2) (C3.267) (C2.270) (C1.240) (s1);
endtikzpicture
enddocument
An empirical solution:
documentclass[tikz,border=3.14mm]standalone
begindocument
begintikzpicture[thin,
dot/.style =
draw,
fill = black,
circle,
inner sep = 0pt,
minimum size = 2pt
]
draw[smooth cycle, tension=0.6] plot coordinates(-1,-.4) (1.1,-.6) (.9,.5) (-1.1,.5) node at (1,.6) $Omega$;
draw[blue] (-1.1,.5)coordinate(s1) .. controls (-.5,-.2) and (.5,0) .. coordinate[dot,pos=0.3,black] (A) coordinate[dot,pos=0.5,black] (B) node[black,below]$x_0$ coordinate[dot,pos=0.7,black] (C) coordinate[pos=0.92,black] (D) (1.1,-.6)coordinate(s2);
draw (A) node[draw,minimum size=0.52cm,circle] (C1);
draw (B) node[draw,minimum size=0.65cm,circle] (C2);
draw (C) node[draw,minimum size=0.52cm,circle] (C3);
node[blue,anchor=south west] at (D) $S$;
node[anchor=south,gray] at ([yshift=10]B) $gamma(barD)$;
draw[dashed,smooth, tension=0.5] plot coordinates(s1) (C1.87) (C2.85) (C3.60) (s2);
draw[dashed,smooth, tension=0.5] plot coordinates(s2) (C3.267) (C2.270) (C1.240) (s1);
endtikzpicture
enddocument
answered Nov 27 at 18:03
nidhin
2,129923
2,129923
add a comment |
add a comment |
Thanks for contributing an answer to TeX - LaTeX Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f462004%2fcircles-touching-path%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
There is a
begindocument
missing,graphicblue
is not a color defined in your MWE and you might want to reword the question such that it becomes clearer.– marmot
Nov 27 at 14:49