Multiple (mathematics)




In science, a multiple is the product of any quantity and an integer.[1][2][3] In other words, for the quantities a and b, we say that b is a multiple of a if b = na for some integer n, which is called the multiplier. If a is not zero, this is equivalent to saying that b/a is an integer.[4][5][6]


In mathematics, when a and b are both integers, and b is a multiple of a, then a is called a divisor of b. One says also that a divides b. If a and b are not integers, mathematicians prefer generally to use integer multiple instead of multiple, for clarification. In fact, multiple is used for other kinds of product; for example, a polynomial p is a multiple of another polynomial q if there exists third polynomial r such that p = qr.


In some texts, "a is a submultiple of b" has the meaning of "b being an integer multiple of a".[7][8] This terminology is also used with units of measurement (for example by the BIPM[9] and NIST[10]), where a submultiple of a main unit is a unit, named by prefixing the main unit, defined as the quotient of the main unit by an integer, mostly a power of 103. For example, a millimetre is the 1000-fold submultiple of a metre.[9][10] As another example, one inch may be considered as a 12-fold submultiple of a foot, or a 36-fold submultiple of a yard.




Contents





  • 1 Examples


  • 2 Properties


  • 3 References


  • 4 See also




Examples


14, 49, –21 and 0 are multiples of 7, whereas 3 and –6 are not. This is because there are integers that 7 may be multiplied by to reach the values of 14, 49, 0 and –21, while there are no such integers for 3 and –6. Each of the products listed below, and in particular, the products for 3 and –6, is the only way that the relevant number can be written as a product of 7 and another real number:


  • 14=7×2displaystyle 14=7times 2 14 = 7 times 2

  • 49=7×7displaystyle 49=7times 7 49 = 7 times 7

  • −21=7×(−3)displaystyle -21=7times (-3) -21 = 7 times (-3)

  • 0=7×0displaystyle 0=7times 0 0 = 7 times 0


  • 3=7×(3/7),3/7displaystyle 3=7times (3/7),quad 3/7displaystyle 3=7times (3/7),quad 3/7 is a rational number, not an integer


  • −6=7×(−6/7),−6/7displaystyle -6=7times (-6/7),quad -6/7displaystyle -6=7times (-6/7),quad -6/7 is a rational number, not an integer.


Properties


  • 0 is a multiple of everything (0=0⋅bdisplaystyle 0=0cdot b0=0cdot b).

  • The product of any integer ndisplaystyle nn and any integer is a multiple of ndisplaystyle nn. In particular, ndisplaystyle nn, which is equal to n×1displaystyle ntimes 1ntimes 1, is a multiple of ndisplaystyle nn (every integer is a multiple of itself), since 1 is an integer.

  • If adisplaystyle aa and bdisplaystyle bb are multiples of xdisplaystyle xx then a+bdisplaystyle a+ba+b and a−bdisplaystyle a-ba-b are also multiples of xdisplaystyle xx.


References




  1. ^ Weisstein, Eric W. "Multiple". MathWorld..mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em


  2. ^ WordNet lexicon database, Princeton University


  3. ^ WordReference.com


  4. ^ The Free Dictionary by Farlex


  5. ^ Dictionary.com Unabridged


  6. ^ Cambridge Dictionary Online


  7. ^ "Submultiple". Merriam-Webster Online Dictionary. Merriam-Webster. 2017. Retrieved 2017-02-01.


  8. ^ "Submultiple". Oxford Living Dictionaries. Oxford University Press. 2017. Retrieved 2017-02-01.


  9. ^ ab International Bureau of Weights and Measures (2006), The International System of Units (SI) (PDF) (8th ed.), ISBN 92-822-2213-6, archived (PDF) from the original on 2017-08-14


  10. ^ ab "NIST Guide to the SI". Section 4.3: Decimal multiples and submultiples of SI units: SI prefixes




See also


  • Unit fraction

  • Ideal (ring theory)


  • Decimal and SI prefix

  • Multiplier (linguistics)


Popular posts from this blog

How to check contact read email or not when send email to Individual?

Christian Cage

How to properly install USB display driver for Fresco Logic FL2000DX on Ubuntu?