Can every locally compact Hausdorff space be recognized as a subspace of a cube that has an open underlying set?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP












3














In this question cubes are topological spaces of the form $[0,1]^J$ with product topology and $[0,1]$ with usual topology. Further a space is a Tychonoff space if and only if it is a completely regular space. Also note that cubes are compact Hausdorff spaces.



In the wide look that two spaces that are homeomorphic are actually the same I was eager to classify certain spaces as subspaces of a cube, and made the following observations:



  • Tychonoff spaces are exactly the subspaces of cubes.


  • Compact Hausdorff spaces are exactly the subspaces of cubes that have a closed subset of the cube as underlying set.


  • Locally compact Hausdorff spaces are exactly the subspaces of cubes that have the intersection of a closed and an open subset of the cube as underlying set.


The first observation is a corollary of the Imbedding theorem for Tychonoff spaces (Munkres Th. 34.2).



The second observation follows from the fact that compact Hausdorff spaces are Tychonoff spaces. They are compact in the cube which is Hausdorff, so their underlying set is a closed set.



The third observation is important in my question. It is based on the statement that a space is homeomorphic to an open subspace of a compact Hausdorff space if and only if $X$ is locally compact Hausdorff (Munkres Cor. 29.4).



First question (a check of someone else never harms):




Are these observations correct?




Second question (the main):




Can locally compact Hausdorff spaces also be classified (up to homeomorphisms) as exactly the subspaces of cubes that have an open subset of the cube as underlying set?




So asked is actually whether I can replace my third observation (intersection of open and closed set) with this (more comfortable) one.



If the answer is "no" then of course I would like to see a counterexample.



Thank you for reading this already.










share|cite|improve this question



















  • 2




    Your observations are correct. For the last question: obviously "no" because evey compact space is locally compact. For a more sophisticated example: this will fail if you take a disjoint union of a locally compact space and a point.
    – freakish
    Dec 26 '18 at 11:32











  • @freakish If I understand well then your argument is that compact (hence also locally compact) sets exist then do not have a clopen homeomorphic image in a cube. Do I understand you correctly?
    – drhab
    Dec 26 '18 at 11:45










  • Yes, a simpliest example is a point.
    – freakish
    Dec 26 '18 at 12:02






  • 2




    Thank you. Concise and convincing counterexample. If you make this an answer then I will accept it.
    – drhab
    Dec 26 '18 at 12:13
















3














In this question cubes are topological spaces of the form $[0,1]^J$ with product topology and $[0,1]$ with usual topology. Further a space is a Tychonoff space if and only if it is a completely regular space. Also note that cubes are compact Hausdorff spaces.



In the wide look that two spaces that are homeomorphic are actually the same I was eager to classify certain spaces as subspaces of a cube, and made the following observations:



  • Tychonoff spaces are exactly the subspaces of cubes.


  • Compact Hausdorff spaces are exactly the subspaces of cubes that have a closed subset of the cube as underlying set.


  • Locally compact Hausdorff spaces are exactly the subspaces of cubes that have the intersection of a closed and an open subset of the cube as underlying set.


The first observation is a corollary of the Imbedding theorem for Tychonoff spaces (Munkres Th. 34.2).



The second observation follows from the fact that compact Hausdorff spaces are Tychonoff spaces. They are compact in the cube which is Hausdorff, so their underlying set is a closed set.



The third observation is important in my question. It is based on the statement that a space is homeomorphic to an open subspace of a compact Hausdorff space if and only if $X$ is locally compact Hausdorff (Munkres Cor. 29.4).



First question (a check of someone else never harms):




Are these observations correct?




Second question (the main):




Can locally compact Hausdorff spaces also be classified (up to homeomorphisms) as exactly the subspaces of cubes that have an open subset of the cube as underlying set?




So asked is actually whether I can replace my third observation (intersection of open and closed set) with this (more comfortable) one.



If the answer is "no" then of course I would like to see a counterexample.



Thank you for reading this already.










share|cite|improve this question



















  • 2




    Your observations are correct. For the last question: obviously "no" because evey compact space is locally compact. For a more sophisticated example: this will fail if you take a disjoint union of a locally compact space and a point.
    – freakish
    Dec 26 '18 at 11:32











  • @freakish If I understand well then your argument is that compact (hence also locally compact) sets exist then do not have a clopen homeomorphic image in a cube. Do I understand you correctly?
    – drhab
    Dec 26 '18 at 11:45










  • Yes, a simpliest example is a point.
    – freakish
    Dec 26 '18 at 12:02






  • 2




    Thank you. Concise and convincing counterexample. If you make this an answer then I will accept it.
    – drhab
    Dec 26 '18 at 12:13














3












3








3







In this question cubes are topological spaces of the form $[0,1]^J$ with product topology and $[0,1]$ with usual topology. Further a space is a Tychonoff space if and only if it is a completely regular space. Also note that cubes are compact Hausdorff spaces.



In the wide look that two spaces that are homeomorphic are actually the same I was eager to classify certain spaces as subspaces of a cube, and made the following observations:



  • Tychonoff spaces are exactly the subspaces of cubes.


  • Compact Hausdorff spaces are exactly the subspaces of cubes that have a closed subset of the cube as underlying set.


  • Locally compact Hausdorff spaces are exactly the subspaces of cubes that have the intersection of a closed and an open subset of the cube as underlying set.


The first observation is a corollary of the Imbedding theorem for Tychonoff spaces (Munkres Th. 34.2).



The second observation follows from the fact that compact Hausdorff spaces are Tychonoff spaces. They are compact in the cube which is Hausdorff, so their underlying set is a closed set.



The third observation is important in my question. It is based on the statement that a space is homeomorphic to an open subspace of a compact Hausdorff space if and only if $X$ is locally compact Hausdorff (Munkres Cor. 29.4).



First question (a check of someone else never harms):




Are these observations correct?




Second question (the main):




Can locally compact Hausdorff spaces also be classified (up to homeomorphisms) as exactly the subspaces of cubes that have an open subset of the cube as underlying set?




So asked is actually whether I can replace my third observation (intersection of open and closed set) with this (more comfortable) one.



If the answer is "no" then of course I would like to see a counterexample.



Thank you for reading this already.










share|cite|improve this question















In this question cubes are topological spaces of the form $[0,1]^J$ with product topology and $[0,1]$ with usual topology. Further a space is a Tychonoff space if and only if it is a completely regular space. Also note that cubes are compact Hausdorff spaces.



In the wide look that two spaces that are homeomorphic are actually the same I was eager to classify certain spaces as subspaces of a cube, and made the following observations:



  • Tychonoff spaces are exactly the subspaces of cubes.


  • Compact Hausdorff spaces are exactly the subspaces of cubes that have a closed subset of the cube as underlying set.


  • Locally compact Hausdorff spaces are exactly the subspaces of cubes that have the intersection of a closed and an open subset of the cube as underlying set.


The first observation is a corollary of the Imbedding theorem for Tychonoff spaces (Munkres Th. 34.2).



The second observation follows from the fact that compact Hausdorff spaces are Tychonoff spaces. They are compact in the cube which is Hausdorff, so their underlying set is a closed set.



The third observation is important in my question. It is based on the statement that a space is homeomorphic to an open subspace of a compact Hausdorff space if and only if $X$ is locally compact Hausdorff (Munkres Cor. 29.4).



First question (a check of someone else never harms):




Are these observations correct?




Second question (the main):




Can locally compact Hausdorff spaces also be classified (up to homeomorphisms) as exactly the subspaces of cubes that have an open subset of the cube as underlying set?




So asked is actually whether I can replace my third observation (intersection of open and closed set) with this (more comfortable) one.



If the answer is "no" then of course I would like to see a counterexample.



Thank you for reading this already.







general-topology separation-axioms product-space






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 26 '18 at 13:20







drhab

















asked Dec 26 '18 at 10:58









drhabdrhab

98.4k544129




98.4k544129







  • 2




    Your observations are correct. For the last question: obviously "no" because evey compact space is locally compact. For a more sophisticated example: this will fail if you take a disjoint union of a locally compact space and a point.
    – freakish
    Dec 26 '18 at 11:32











  • @freakish If I understand well then your argument is that compact (hence also locally compact) sets exist then do not have a clopen homeomorphic image in a cube. Do I understand you correctly?
    – drhab
    Dec 26 '18 at 11:45










  • Yes, a simpliest example is a point.
    – freakish
    Dec 26 '18 at 12:02






  • 2




    Thank you. Concise and convincing counterexample. If you make this an answer then I will accept it.
    – drhab
    Dec 26 '18 at 12:13













  • 2




    Your observations are correct. For the last question: obviously "no" because evey compact space is locally compact. For a more sophisticated example: this will fail if you take a disjoint union of a locally compact space and a point.
    – freakish
    Dec 26 '18 at 11:32











  • @freakish If I understand well then your argument is that compact (hence also locally compact) sets exist then do not have a clopen homeomorphic image in a cube. Do I understand you correctly?
    – drhab
    Dec 26 '18 at 11:45










  • Yes, a simpliest example is a point.
    – freakish
    Dec 26 '18 at 12:02






  • 2




    Thank you. Concise and convincing counterexample. If you make this an answer then I will accept it.
    – drhab
    Dec 26 '18 at 12:13








2




2




Your observations are correct. For the last question: obviously "no" because evey compact space is locally compact. For a more sophisticated example: this will fail if you take a disjoint union of a locally compact space and a point.
– freakish
Dec 26 '18 at 11:32





Your observations are correct. For the last question: obviously "no" because evey compact space is locally compact. For a more sophisticated example: this will fail if you take a disjoint union of a locally compact space and a point.
– freakish
Dec 26 '18 at 11:32













@freakish If I understand well then your argument is that compact (hence also locally compact) sets exist then do not have a clopen homeomorphic image in a cube. Do I understand you correctly?
– drhab
Dec 26 '18 at 11:45




@freakish If I understand well then your argument is that compact (hence also locally compact) sets exist then do not have a clopen homeomorphic image in a cube. Do I understand you correctly?
– drhab
Dec 26 '18 at 11:45












Yes, a simpliest example is a point.
– freakish
Dec 26 '18 at 12:02




Yes, a simpliest example is a point.
– freakish
Dec 26 '18 at 12:02




2




2




Thank you. Concise and convincing counterexample. If you make this an answer then I will accept it.
– drhab
Dec 26 '18 at 12:13





Thank you. Concise and convincing counterexample. If you make this an answer then I will accept it.
– drhab
Dec 26 '18 at 12:13











2 Answers
2






active

oldest

votes


















3















Are these observations correct?




Yes.




Can locally compact Hausdorff spaces also be classified (up to homeomorphisms) as exactly the subspaces of cubes that have an open subset of the cube as underlying set?




No. Compact spaces are locally compact. And so the simpliest counterexample is a singleton $*$. Also if you take any locally compact space $X$ and the disjoint union $Z:=Xsqcup Y$ with a compact space $Y$ then $Z$ cannot be an open subset of a cube even though it is locally compact.






share|cite|improve this answer






























    2














    Your observations are correct because of the following theorem: if $X$ is compact Hausdorff and $Y subseteq X$ is locally compact then $Y = C cap O$ where $Csubseteq Y$ is closed and $O subseteq Y$ is open. Applied to $X = [0,1]^J$, and $Y$ any Tychonoff space (seen as a subspace of $X$).



    Of course compact Hausdorff spaces cannot be seen as open subsets of Tychonoff cubes (they would be clopen, contradicting the connectedness of those cubes). Moreover open subsets of e.g. $[0,1]^mathbbN$ are infinite dimensional and not all locally compact sets are. You cannot do better in general then "open subset of a closed subset of a Tychonoff cube".






    share|cite|improve this answer




















      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052835%2fcan-every-locally-compact-hausdorff-space-be-recognized-as-a-subspace-of-a-cube%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3















      Are these observations correct?




      Yes.




      Can locally compact Hausdorff spaces also be classified (up to homeomorphisms) as exactly the subspaces of cubes that have an open subset of the cube as underlying set?




      No. Compact spaces are locally compact. And so the simpliest counterexample is a singleton $*$. Also if you take any locally compact space $X$ and the disjoint union $Z:=Xsqcup Y$ with a compact space $Y$ then $Z$ cannot be an open subset of a cube even though it is locally compact.






      share|cite|improve this answer



























        3















        Are these observations correct?




        Yes.




        Can locally compact Hausdorff spaces also be classified (up to homeomorphisms) as exactly the subspaces of cubes that have an open subset of the cube as underlying set?




        No. Compact spaces are locally compact. And so the simpliest counterexample is a singleton $*$. Also if you take any locally compact space $X$ and the disjoint union $Z:=Xsqcup Y$ with a compact space $Y$ then $Z$ cannot be an open subset of a cube even though it is locally compact.






        share|cite|improve this answer

























          3












          3








          3







          Are these observations correct?




          Yes.




          Can locally compact Hausdorff spaces also be classified (up to homeomorphisms) as exactly the subspaces of cubes that have an open subset of the cube as underlying set?




          No. Compact spaces are locally compact. And so the simpliest counterexample is a singleton $*$. Also if you take any locally compact space $X$ and the disjoint union $Z:=Xsqcup Y$ with a compact space $Y$ then $Z$ cannot be an open subset of a cube even though it is locally compact.






          share|cite|improve this answer















          Are these observations correct?




          Yes.




          Can locally compact Hausdorff spaces also be classified (up to homeomorphisms) as exactly the subspaces of cubes that have an open subset of the cube as underlying set?




          No. Compact spaces are locally compact. And so the simpliest counterexample is a singleton $*$. Also if you take any locally compact space $X$ and the disjoint union $Z:=Xsqcup Y$ with a compact space $Y$ then $Z$ cannot be an open subset of a cube even though it is locally compact.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 26 '18 at 18:20

























          answered Dec 26 '18 at 12:53









          freakishfreakish

          11.6k1629




          11.6k1629





















              2














              Your observations are correct because of the following theorem: if $X$ is compact Hausdorff and $Y subseteq X$ is locally compact then $Y = C cap O$ where $Csubseteq Y$ is closed and $O subseteq Y$ is open. Applied to $X = [0,1]^J$, and $Y$ any Tychonoff space (seen as a subspace of $X$).



              Of course compact Hausdorff spaces cannot be seen as open subsets of Tychonoff cubes (they would be clopen, contradicting the connectedness of those cubes). Moreover open subsets of e.g. $[0,1]^mathbbN$ are infinite dimensional and not all locally compact sets are. You cannot do better in general then "open subset of a closed subset of a Tychonoff cube".






              share|cite|improve this answer

























                2














                Your observations are correct because of the following theorem: if $X$ is compact Hausdorff and $Y subseteq X$ is locally compact then $Y = C cap O$ where $Csubseteq Y$ is closed and $O subseteq Y$ is open. Applied to $X = [0,1]^J$, and $Y$ any Tychonoff space (seen as a subspace of $X$).



                Of course compact Hausdorff spaces cannot be seen as open subsets of Tychonoff cubes (they would be clopen, contradicting the connectedness of those cubes). Moreover open subsets of e.g. $[0,1]^mathbbN$ are infinite dimensional and not all locally compact sets are. You cannot do better in general then "open subset of a closed subset of a Tychonoff cube".






                share|cite|improve this answer























                  2












                  2








                  2






                  Your observations are correct because of the following theorem: if $X$ is compact Hausdorff and $Y subseteq X$ is locally compact then $Y = C cap O$ where $Csubseteq Y$ is closed and $O subseteq Y$ is open. Applied to $X = [0,1]^J$, and $Y$ any Tychonoff space (seen as a subspace of $X$).



                  Of course compact Hausdorff spaces cannot be seen as open subsets of Tychonoff cubes (they would be clopen, contradicting the connectedness of those cubes). Moreover open subsets of e.g. $[0,1]^mathbbN$ are infinite dimensional and not all locally compact sets are. You cannot do better in general then "open subset of a closed subset of a Tychonoff cube".






                  share|cite|improve this answer












                  Your observations are correct because of the following theorem: if $X$ is compact Hausdorff and $Y subseteq X$ is locally compact then $Y = C cap O$ where $Csubseteq Y$ is closed and $O subseteq Y$ is open. Applied to $X = [0,1]^J$, and $Y$ any Tychonoff space (seen as a subspace of $X$).



                  Of course compact Hausdorff spaces cannot be seen as open subsets of Tychonoff cubes (they would be clopen, contradicting the connectedness of those cubes). Moreover open subsets of e.g. $[0,1]^mathbbN$ are infinite dimensional and not all locally compact sets are. You cannot do better in general then "open subset of a closed subset of a Tychonoff cube".







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 26 '18 at 12:58









                  Henno BrandsmaHenno Brandsma

                  105k347114




                  105k347114



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.





                      Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                      Please pay close attention to the following guidance:


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052835%2fcan-every-locally-compact-hausdorff-space-be-recognized-as-a-subspace-of-a-cube%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown






                      Popular posts from this blog

                      How to check contact read email or not when send email to Individual?

                      How many registers does an x86_64 CPU actually have?

                      Nur Jahan