Relation between binomial and negative binomial

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1












$begingroup$


enter image description here



I was reading on negative binomial from a Statistics textbook and came across this portion on probability relation between binomial and negative binomial. $Y$ refers to the number of trials required to get $r$ successes.
Can somebody please explain the relation










share|cite|improve this question









$endgroup$


















    1












    $begingroup$


    enter image description here



    I was reading on negative binomial from a Statistics textbook and came across this portion on probability relation between binomial and negative binomial. $Y$ refers to the number of trials required to get $r$ successes.
    Can somebody please explain the relation










    share|cite|improve this question









    $endgroup$














      1












      1








      1





      $begingroup$


      enter image description here



      I was reading on negative binomial from a Statistics textbook and came across this portion on probability relation between binomial and negative binomial. $Y$ refers to the number of trials required to get $r$ successes.
      Can somebody please explain the relation










      share|cite|improve this question









      $endgroup$




      enter image description here



      I was reading on negative binomial from a Statistics textbook and came across this portion on probability relation between binomial and negative binomial. $Y$ refers to the number of trials required to get $r$ successes.
      Can somebody please explain the relation







      self-study binomial negative-binomial






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Mar 16 at 9:09









      user46697user46697

      438312




      438312




















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Based on binomial distribution, event $X geq r$ is the set of outcomes that satisfy "$n$ trials led to $r$ successes or more", which is equivalent to "$r$-th success happened at $n$-th trial or before", which is in turn equivalent to "$n$ trials or less were required to get $r$ successes", and that is it.
          $$beginalign*
          PX geq r &= Pmboxat least r successes in n trials\
          &= Pmboxr-th success in n-th trial or before\
          &= Pmboxn or fewer trials to get r successes\
          &= PY leq n
          endalign*$$



          The second relation is the complement of first relation that is:
          $$beginalign*
          PX geq r &= PY leq n,\
          1 - PX geq r &= 1 - PY leq n,\
          PX < r &= PY > n\
          endalign*$$



          The second relation means:



          $$Pmboxless than r successes in n trials= Pmboxmore than n trials to get r successes$$






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you. What about the second relation?
            $endgroup$
            – user46697
            Mar 16 at 10:05










          • $begingroup$
            In the second relation, is it right to say that the P( less than r successes in n trials) $=$ P( more than n trials to get r successes)
            $endgroup$
            – user46697
            Mar 16 at 10:15











          • $begingroup$
            (32) is simple the complement of (31)
            $endgroup$
            – Henry
            Mar 16 at 13:33











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "65"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f397830%2frelation-between-binomial-and-negative-binomial%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Based on binomial distribution, event $X geq r$ is the set of outcomes that satisfy "$n$ trials led to $r$ successes or more", which is equivalent to "$r$-th success happened at $n$-th trial or before", which is in turn equivalent to "$n$ trials or less were required to get $r$ successes", and that is it.
          $$beginalign*
          PX geq r &= Pmboxat least r successes in n trials\
          &= Pmboxr-th success in n-th trial or before\
          &= Pmboxn or fewer trials to get r successes\
          &= PY leq n
          endalign*$$



          The second relation is the complement of first relation that is:
          $$beginalign*
          PX geq r &= PY leq n,\
          1 - PX geq r &= 1 - PY leq n,\
          PX < r &= PY > n\
          endalign*$$



          The second relation means:



          $$Pmboxless than r successes in n trials= Pmboxmore than n trials to get r successes$$






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you. What about the second relation?
            $endgroup$
            – user46697
            Mar 16 at 10:05










          • $begingroup$
            In the second relation, is it right to say that the P( less than r successes in n trials) $=$ P( more than n trials to get r successes)
            $endgroup$
            – user46697
            Mar 16 at 10:15











          • $begingroup$
            (32) is simple the complement of (31)
            $endgroup$
            – Henry
            Mar 16 at 13:33















          2












          $begingroup$

          Based on binomial distribution, event $X geq r$ is the set of outcomes that satisfy "$n$ trials led to $r$ successes or more", which is equivalent to "$r$-th success happened at $n$-th trial or before", which is in turn equivalent to "$n$ trials or less were required to get $r$ successes", and that is it.
          $$beginalign*
          PX geq r &= Pmboxat least r successes in n trials\
          &= Pmboxr-th success in n-th trial or before\
          &= Pmboxn or fewer trials to get r successes\
          &= PY leq n
          endalign*$$



          The second relation is the complement of first relation that is:
          $$beginalign*
          PX geq r &= PY leq n,\
          1 - PX geq r &= 1 - PY leq n,\
          PX < r &= PY > n\
          endalign*$$



          The second relation means:



          $$Pmboxless than r successes in n trials= Pmboxmore than n trials to get r successes$$






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you. What about the second relation?
            $endgroup$
            – user46697
            Mar 16 at 10:05










          • $begingroup$
            In the second relation, is it right to say that the P( less than r successes in n trials) $=$ P( more than n trials to get r successes)
            $endgroup$
            – user46697
            Mar 16 at 10:15











          • $begingroup$
            (32) is simple the complement of (31)
            $endgroup$
            – Henry
            Mar 16 at 13:33













          2












          2








          2





          $begingroup$

          Based on binomial distribution, event $X geq r$ is the set of outcomes that satisfy "$n$ trials led to $r$ successes or more", which is equivalent to "$r$-th success happened at $n$-th trial or before", which is in turn equivalent to "$n$ trials or less were required to get $r$ successes", and that is it.
          $$beginalign*
          PX geq r &= Pmboxat least r successes in n trials\
          &= Pmboxr-th success in n-th trial or before\
          &= Pmboxn or fewer trials to get r successes\
          &= PY leq n
          endalign*$$



          The second relation is the complement of first relation that is:
          $$beginalign*
          PX geq r &= PY leq n,\
          1 - PX geq r &= 1 - PY leq n,\
          PX < r &= PY > n\
          endalign*$$



          The second relation means:



          $$Pmboxless than r successes in n trials= Pmboxmore than n trials to get r successes$$






          share|cite|improve this answer











          $endgroup$



          Based on binomial distribution, event $X geq r$ is the set of outcomes that satisfy "$n$ trials led to $r$ successes or more", which is equivalent to "$r$-th success happened at $n$-th trial or before", which is in turn equivalent to "$n$ trials or less were required to get $r$ successes", and that is it.
          $$beginalign*
          PX geq r &= Pmboxat least r successes in n trials\
          &= Pmboxr-th success in n-th trial or before\
          &= Pmboxn or fewer trials to get r successes\
          &= PY leq n
          endalign*$$



          The second relation is the complement of first relation that is:
          $$beginalign*
          PX geq r &= PY leq n,\
          1 - PX geq r &= 1 - PY leq n,\
          PX < r &= PY > n\
          endalign*$$



          The second relation means:



          $$Pmboxless than r successes in n trials= Pmboxmore than n trials to get r successes$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Mar 16 at 10:19

























          answered Mar 16 at 10:02









          EsmailianEsmailian

          42615




          42615











          • $begingroup$
            Thank you. What about the second relation?
            $endgroup$
            – user46697
            Mar 16 at 10:05










          • $begingroup$
            In the second relation, is it right to say that the P( less than r successes in n trials) $=$ P( more than n trials to get r successes)
            $endgroup$
            – user46697
            Mar 16 at 10:15











          • $begingroup$
            (32) is simple the complement of (31)
            $endgroup$
            – Henry
            Mar 16 at 13:33
















          • $begingroup$
            Thank you. What about the second relation?
            $endgroup$
            – user46697
            Mar 16 at 10:05










          • $begingroup$
            In the second relation, is it right to say that the P( less than r successes in n trials) $=$ P( more than n trials to get r successes)
            $endgroup$
            – user46697
            Mar 16 at 10:15











          • $begingroup$
            (32) is simple the complement of (31)
            $endgroup$
            – Henry
            Mar 16 at 13:33















          $begingroup$
          Thank you. What about the second relation?
          $endgroup$
          – user46697
          Mar 16 at 10:05




          $begingroup$
          Thank you. What about the second relation?
          $endgroup$
          – user46697
          Mar 16 at 10:05












          $begingroup$
          In the second relation, is it right to say that the P( less than r successes in n trials) $=$ P( more than n trials to get r successes)
          $endgroup$
          – user46697
          Mar 16 at 10:15





          $begingroup$
          In the second relation, is it right to say that the P( less than r successes in n trials) $=$ P( more than n trials to get r successes)
          $endgroup$
          – user46697
          Mar 16 at 10:15













          $begingroup$
          (32) is simple the complement of (31)
          $endgroup$
          – Henry
          Mar 16 at 13:33




          $begingroup$
          (32) is simple the complement of (31)
          $endgroup$
          – Henry
          Mar 16 at 13:33

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Cross Validated!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f397830%2frelation-between-binomial-and-negative-binomial%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown






          Popular posts from this blog

          How to check contact read email or not when send email to Individual?

          How many registers does an x86_64 CPU actually have?

          Nur Jahan