Generate this sequence more efficiently

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP












4












$begingroup$


Is there a more effecient way to generate the sequence shown below.



createOrder[n_] := 
Which[OddQ[n],
Join[Table[2 i - 1, i, 1, (n + 1)/2],Reverse@Table[2 i, i, 1, (n + 1)/2]],
EvenQ[n],
Join[Table[2 i - 1, i, 1, n/2 + 1],Reverse@Table[2 i, i, 1, n/2]]]


createOrder[#] & /@ Range[8] // MatrixForm


table










share|improve this question











$endgroup$
















    4












    $begingroup$


    Is there a more effecient way to generate the sequence shown below.



    createOrder[n_] := 
    Which[OddQ[n],
    Join[Table[2 i - 1, i, 1, (n + 1)/2],Reverse@Table[2 i, i, 1, (n + 1)/2]],
    EvenQ[n],
    Join[Table[2 i - 1, i, 1, n/2 + 1],Reverse@Table[2 i, i, 1, n/2]]]


    createOrder[#] & /@ Range[8] // MatrixForm


    table










    share|improve this question











    $endgroup$














      4












      4








      4





      $begingroup$


      Is there a more effecient way to generate the sequence shown below.



      createOrder[n_] := 
      Which[OddQ[n],
      Join[Table[2 i - 1, i, 1, (n + 1)/2],Reverse@Table[2 i, i, 1, (n + 1)/2]],
      EvenQ[n],
      Join[Table[2 i - 1, i, 1, n/2 + 1],Reverse@Table[2 i, i, 1, n/2]]]


      createOrder[#] & /@ Range[8] // MatrixForm


      table










      share|improve this question











      $endgroup$




      Is there a more effecient way to generate the sequence shown below.



      createOrder[n_] := 
      Which[OddQ[n],
      Join[Table[2 i - 1, i, 1, (n + 1)/2],Reverse@Table[2 i, i, 1, (n + 1)/2]],
      EvenQ[n],
      Join[Table[2 i - 1, i, 1, n/2 + 1],Reverse@Table[2 i, i, 1, n/2]]]


      createOrder[#] & /@ Range[8] // MatrixForm


      table







      list-manipulation table sequence






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Jan 18 at 10:11









      Henrik Schumacher

      52.4k470147




      52.4k470147










      asked Jan 18 at 7:09









      Hubble07Hubble07

      2,988721




      2,988721




















          3 Answers
          3






          active

          oldest

          votes


















          4












          $begingroup$

          cg = Compile[a, _Integer, 1, b, _Integer, 1, i, _Integer,
          Join[a[[1 ;; Quotient[i + 1, 2]]], b[[-Quotient[i, 2] ;; -1]]],
          CompilationTarget -> "WVM",
          RuntimeAttributes -> Listable,
          Parallelization -> True
          ];
          g[n_Integer] := cg[Range[1, n + 1, 2], Range[n + Mod[n, 2], 2, -2], Range[2, n + 1]];





          share|improve this answer











          $endgroup$












          • $begingroup$
            there's a little bug with g[n_?Integer], use g[n_Integer] or g[n_?IntegerQ] instead.
            $endgroup$
            – Jerry
            Jan 18 at 10:01











          • $begingroup$
            Good point, I added the pattern after posting...
            $endgroup$
            – Henrik Schumacher
            Jan 18 at 10:10


















          6












          $begingroup$

          ClearAll[f]
          f[n_Integer] := Join[Range[1, #, 2], Reverse[Range[2, #, 2]]] & /@ Range[2, n];
          TeXForm @ MatrixForm @ f[8]



          $left(
          beginarrayc
          1,2 \
          1,3,2 \
          1,3,4,2 \
          1,3,5,4,2 \
          1,3,5,6,4,2 \
          1,3,5,7,6,4,2 \
          1,3,5,7,8,6,4,2 \
          endarray
          right)$




          Also



          ClearAll[f2, f3]
          f2[n_Integer] := SortBy[Range@#, EvenQ, -# (-1 )^Mod[#, 2] &] & /@ Range[2, n]
          f3[n_] := Ordering[Transpose[-Mod[#, 2], -# (-1 )^Mod[#, 2] &@Range[#]]] & /@ Range[2, n]

          f[8] == f2[8] == f3[8]



          True







          share|improve this answer











          $endgroup$




















            5












            $begingroup$

             fGetList[n_]:= (Select[Range[#], OddQ]~Join~Reverse@Select[Range[#], EvenQ]) & /@Range[n] // Rest

            fGetList[10] // MatrixForm // TeXForm


            $
            left(
            beginarrayc
            1,2 \
            1,3,2 \
            1,3,4,2 \
            1,3,5,4,2 \
            1,3,5,6,4,2 \
            1,3,5,7,6,4,2 \
            1,3,5,7,8,6,4,2 \
            1,3,5,7,9,8,6,4,2 \
            1,3,5,7,9,10,8,6,4,2 \
            endarray
            right)$



            another version



            fGetList2[n_?IntegerQ] := 
            Flatten@MapAt[Reverse, GatherBy[Range[#], OddQ], 2] & /@ Range[2, n]

            fGetList2[10] // MatrixForm // TeXForm


            $left(
            beginarrayc
            1,2 \
            1,3,2 \
            1,3,4,2 \
            1,3,5,4,2 \
            1,3,5,6,4,2 \
            1,3,5,7,6,4,2 \
            1,3,5,7,8,6,4,2 \
            1,3,5,7,9,8,6,4,2 \
            1,3,5,7,9,10,8,6,4,2 \
            endarray
            right)$






            share|improve this answer











            $endgroup$












              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "387"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f189729%2fgenerate-this-sequence-more-efficiently%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              4












              $begingroup$

              cg = Compile[a, _Integer, 1, b, _Integer, 1, i, _Integer,
              Join[a[[1 ;; Quotient[i + 1, 2]]], b[[-Quotient[i, 2] ;; -1]]],
              CompilationTarget -> "WVM",
              RuntimeAttributes -> Listable,
              Parallelization -> True
              ];
              g[n_Integer] := cg[Range[1, n + 1, 2], Range[n + Mod[n, 2], 2, -2], Range[2, n + 1]];





              share|improve this answer











              $endgroup$












              • $begingroup$
                there's a little bug with g[n_?Integer], use g[n_Integer] or g[n_?IntegerQ] instead.
                $endgroup$
                – Jerry
                Jan 18 at 10:01











              • $begingroup$
                Good point, I added the pattern after posting...
                $endgroup$
                – Henrik Schumacher
                Jan 18 at 10:10















              4












              $begingroup$

              cg = Compile[a, _Integer, 1, b, _Integer, 1, i, _Integer,
              Join[a[[1 ;; Quotient[i + 1, 2]]], b[[-Quotient[i, 2] ;; -1]]],
              CompilationTarget -> "WVM",
              RuntimeAttributes -> Listable,
              Parallelization -> True
              ];
              g[n_Integer] := cg[Range[1, n + 1, 2], Range[n + Mod[n, 2], 2, -2], Range[2, n + 1]];





              share|improve this answer











              $endgroup$












              • $begingroup$
                there's a little bug with g[n_?Integer], use g[n_Integer] or g[n_?IntegerQ] instead.
                $endgroup$
                – Jerry
                Jan 18 at 10:01











              • $begingroup$
                Good point, I added the pattern after posting...
                $endgroup$
                – Henrik Schumacher
                Jan 18 at 10:10













              4












              4








              4





              $begingroup$

              cg = Compile[a, _Integer, 1, b, _Integer, 1, i, _Integer,
              Join[a[[1 ;; Quotient[i + 1, 2]]], b[[-Quotient[i, 2] ;; -1]]],
              CompilationTarget -> "WVM",
              RuntimeAttributes -> Listable,
              Parallelization -> True
              ];
              g[n_Integer] := cg[Range[1, n + 1, 2], Range[n + Mod[n, 2], 2, -2], Range[2, n + 1]];





              share|improve this answer











              $endgroup$



              cg = Compile[a, _Integer, 1, b, _Integer, 1, i, _Integer,
              Join[a[[1 ;; Quotient[i + 1, 2]]], b[[-Quotient[i, 2] ;; -1]]],
              CompilationTarget -> "WVM",
              RuntimeAttributes -> Listable,
              Parallelization -> True
              ];
              g[n_Integer] := cg[Range[1, n + 1, 2], Range[n + Mod[n, 2], 2, -2], Range[2, n + 1]];






              share|improve this answer














              share|improve this answer



              share|improve this answer








              edited Jan 18 at 10:10

























              answered Jan 18 at 9:28









              Henrik SchumacherHenrik Schumacher

              52.4k470147




              52.4k470147











              • $begingroup$
                there's a little bug with g[n_?Integer], use g[n_Integer] or g[n_?IntegerQ] instead.
                $endgroup$
                – Jerry
                Jan 18 at 10:01











              • $begingroup$
                Good point, I added the pattern after posting...
                $endgroup$
                – Henrik Schumacher
                Jan 18 at 10:10
















              • $begingroup$
                there's a little bug with g[n_?Integer], use g[n_Integer] or g[n_?IntegerQ] instead.
                $endgroup$
                – Jerry
                Jan 18 at 10:01











              • $begingroup$
                Good point, I added the pattern after posting...
                $endgroup$
                – Henrik Schumacher
                Jan 18 at 10:10















              $begingroup$
              there's a little bug with g[n_?Integer], use g[n_Integer] or g[n_?IntegerQ] instead.
              $endgroup$
              – Jerry
              Jan 18 at 10:01





              $begingroup$
              there's a little bug with g[n_?Integer], use g[n_Integer] or g[n_?IntegerQ] instead.
              $endgroup$
              – Jerry
              Jan 18 at 10:01













              $begingroup$
              Good point, I added the pattern after posting...
              $endgroup$
              – Henrik Schumacher
              Jan 18 at 10:10




              $begingroup$
              Good point, I added the pattern after posting...
              $endgroup$
              – Henrik Schumacher
              Jan 18 at 10:10











              6












              $begingroup$

              ClearAll[f]
              f[n_Integer] := Join[Range[1, #, 2], Reverse[Range[2, #, 2]]] & /@ Range[2, n];
              TeXForm @ MatrixForm @ f[8]



              $left(
              beginarrayc
              1,2 \
              1,3,2 \
              1,3,4,2 \
              1,3,5,4,2 \
              1,3,5,6,4,2 \
              1,3,5,7,6,4,2 \
              1,3,5,7,8,6,4,2 \
              endarray
              right)$




              Also



              ClearAll[f2, f3]
              f2[n_Integer] := SortBy[Range@#, EvenQ, -# (-1 )^Mod[#, 2] &] & /@ Range[2, n]
              f3[n_] := Ordering[Transpose[-Mod[#, 2], -# (-1 )^Mod[#, 2] &@Range[#]]] & /@ Range[2, n]

              f[8] == f2[8] == f3[8]



              True







              share|improve this answer











              $endgroup$

















                6












                $begingroup$

                ClearAll[f]
                f[n_Integer] := Join[Range[1, #, 2], Reverse[Range[2, #, 2]]] & /@ Range[2, n];
                TeXForm @ MatrixForm @ f[8]



                $left(
                beginarrayc
                1,2 \
                1,3,2 \
                1,3,4,2 \
                1,3,5,4,2 \
                1,3,5,6,4,2 \
                1,3,5,7,6,4,2 \
                1,3,5,7,8,6,4,2 \
                endarray
                right)$




                Also



                ClearAll[f2, f3]
                f2[n_Integer] := SortBy[Range@#, EvenQ, -# (-1 )^Mod[#, 2] &] & /@ Range[2, n]
                f3[n_] := Ordering[Transpose[-Mod[#, 2], -# (-1 )^Mod[#, 2] &@Range[#]]] & /@ Range[2, n]

                f[8] == f2[8] == f3[8]



                True







                share|improve this answer











                $endgroup$















                  6












                  6








                  6





                  $begingroup$

                  ClearAll[f]
                  f[n_Integer] := Join[Range[1, #, 2], Reverse[Range[2, #, 2]]] & /@ Range[2, n];
                  TeXForm @ MatrixForm @ f[8]



                  $left(
                  beginarrayc
                  1,2 \
                  1,3,2 \
                  1,3,4,2 \
                  1,3,5,4,2 \
                  1,3,5,6,4,2 \
                  1,3,5,7,6,4,2 \
                  1,3,5,7,8,6,4,2 \
                  endarray
                  right)$




                  Also



                  ClearAll[f2, f3]
                  f2[n_Integer] := SortBy[Range@#, EvenQ, -# (-1 )^Mod[#, 2] &] & /@ Range[2, n]
                  f3[n_] := Ordering[Transpose[-Mod[#, 2], -# (-1 )^Mod[#, 2] &@Range[#]]] & /@ Range[2, n]

                  f[8] == f2[8] == f3[8]



                  True







                  share|improve this answer











                  $endgroup$



                  ClearAll[f]
                  f[n_Integer] := Join[Range[1, #, 2], Reverse[Range[2, #, 2]]] & /@ Range[2, n];
                  TeXForm @ MatrixForm @ f[8]



                  $left(
                  beginarrayc
                  1,2 \
                  1,3,2 \
                  1,3,4,2 \
                  1,3,5,4,2 \
                  1,3,5,6,4,2 \
                  1,3,5,7,6,4,2 \
                  1,3,5,7,8,6,4,2 \
                  endarray
                  right)$




                  Also



                  ClearAll[f2, f3]
                  f2[n_Integer] := SortBy[Range@#, EvenQ, -# (-1 )^Mod[#, 2] &] & /@ Range[2, n]
                  f3[n_] := Ordering[Transpose[-Mod[#, 2], -# (-1 )^Mod[#, 2] &@Range[#]]] & /@ Range[2, n]

                  f[8] == f2[8] == f3[8]



                  True








                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited Jan 18 at 8:27

























                  answered Jan 18 at 7:35









                  kglrkglr

                  182k10200413




                  182k10200413





















                      5












                      $begingroup$

                       fGetList[n_]:= (Select[Range[#], OddQ]~Join~Reverse@Select[Range[#], EvenQ]) & /@Range[n] // Rest

                      fGetList[10] // MatrixForm // TeXForm


                      $
                      left(
                      beginarrayc
                      1,2 \
                      1,3,2 \
                      1,3,4,2 \
                      1,3,5,4,2 \
                      1,3,5,6,4,2 \
                      1,3,5,7,6,4,2 \
                      1,3,5,7,8,6,4,2 \
                      1,3,5,7,9,8,6,4,2 \
                      1,3,5,7,9,10,8,6,4,2 \
                      endarray
                      right)$



                      another version



                      fGetList2[n_?IntegerQ] := 
                      Flatten@MapAt[Reverse, GatherBy[Range[#], OddQ], 2] & /@ Range[2, n]

                      fGetList2[10] // MatrixForm // TeXForm


                      $left(
                      beginarrayc
                      1,2 \
                      1,3,2 \
                      1,3,4,2 \
                      1,3,5,4,2 \
                      1,3,5,6,4,2 \
                      1,3,5,7,6,4,2 \
                      1,3,5,7,8,6,4,2 \
                      1,3,5,7,9,8,6,4,2 \
                      1,3,5,7,9,10,8,6,4,2 \
                      endarray
                      right)$






                      share|improve this answer











                      $endgroup$

















                        5












                        $begingroup$

                         fGetList[n_]:= (Select[Range[#], OddQ]~Join~Reverse@Select[Range[#], EvenQ]) & /@Range[n] // Rest

                        fGetList[10] // MatrixForm // TeXForm


                        $
                        left(
                        beginarrayc
                        1,2 \
                        1,3,2 \
                        1,3,4,2 \
                        1,3,5,4,2 \
                        1,3,5,6,4,2 \
                        1,3,5,7,6,4,2 \
                        1,3,5,7,8,6,4,2 \
                        1,3,5,7,9,8,6,4,2 \
                        1,3,5,7,9,10,8,6,4,2 \
                        endarray
                        right)$



                        another version



                        fGetList2[n_?IntegerQ] := 
                        Flatten@MapAt[Reverse, GatherBy[Range[#], OddQ], 2] & /@ Range[2, n]

                        fGetList2[10] // MatrixForm // TeXForm


                        $left(
                        beginarrayc
                        1,2 \
                        1,3,2 \
                        1,3,4,2 \
                        1,3,5,4,2 \
                        1,3,5,6,4,2 \
                        1,3,5,7,6,4,2 \
                        1,3,5,7,8,6,4,2 \
                        1,3,5,7,9,8,6,4,2 \
                        1,3,5,7,9,10,8,6,4,2 \
                        endarray
                        right)$






                        share|improve this answer











                        $endgroup$















                          5












                          5








                          5





                          $begingroup$

                           fGetList[n_]:= (Select[Range[#], OddQ]~Join~Reverse@Select[Range[#], EvenQ]) & /@Range[n] // Rest

                          fGetList[10] // MatrixForm // TeXForm


                          $
                          left(
                          beginarrayc
                          1,2 \
                          1,3,2 \
                          1,3,4,2 \
                          1,3,5,4,2 \
                          1,3,5,6,4,2 \
                          1,3,5,7,6,4,2 \
                          1,3,5,7,8,6,4,2 \
                          1,3,5,7,9,8,6,4,2 \
                          1,3,5,7,9,10,8,6,4,2 \
                          endarray
                          right)$



                          another version



                          fGetList2[n_?IntegerQ] := 
                          Flatten@MapAt[Reverse, GatherBy[Range[#], OddQ], 2] & /@ Range[2, n]

                          fGetList2[10] // MatrixForm // TeXForm


                          $left(
                          beginarrayc
                          1,2 \
                          1,3,2 \
                          1,3,4,2 \
                          1,3,5,4,2 \
                          1,3,5,6,4,2 \
                          1,3,5,7,6,4,2 \
                          1,3,5,7,8,6,4,2 \
                          1,3,5,7,9,8,6,4,2 \
                          1,3,5,7,9,10,8,6,4,2 \
                          endarray
                          right)$






                          share|improve this answer











                          $endgroup$



                           fGetList[n_]:= (Select[Range[#], OddQ]~Join~Reverse@Select[Range[#], EvenQ]) & /@Range[n] // Rest

                          fGetList[10] // MatrixForm // TeXForm


                          $
                          left(
                          beginarrayc
                          1,2 \
                          1,3,2 \
                          1,3,4,2 \
                          1,3,5,4,2 \
                          1,3,5,6,4,2 \
                          1,3,5,7,6,4,2 \
                          1,3,5,7,8,6,4,2 \
                          1,3,5,7,9,8,6,4,2 \
                          1,3,5,7,9,10,8,6,4,2 \
                          endarray
                          right)$



                          another version



                          fGetList2[n_?IntegerQ] := 
                          Flatten@MapAt[Reverse, GatherBy[Range[#], OddQ], 2] & /@ Range[2, n]

                          fGetList2[10] // MatrixForm // TeXForm


                          $left(
                          beginarrayc
                          1,2 \
                          1,3,2 \
                          1,3,4,2 \
                          1,3,5,4,2 \
                          1,3,5,6,4,2 \
                          1,3,5,7,6,4,2 \
                          1,3,5,7,8,6,4,2 \
                          1,3,5,7,9,8,6,4,2 \
                          1,3,5,7,9,10,8,6,4,2 \
                          endarray
                          right)$







                          share|improve this answer














                          share|improve this answer



                          share|improve this answer








                          edited Jan 18 at 7:54

























                          answered Jan 18 at 7:35









                          JerryJerry

                          1,380212




                          1,380212



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematica Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f189729%2fgenerate-this-sequence-more-efficiently%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown






                              Popular posts from this blog

                              How to check contact read email or not when send email to Individual?

                              How many registers does an x86_64 CPU actually have?

                              Nur Jahan