Infinite summation $sum_limitsn=0^infty fracsin(ntheta)2^n$
Clash Royale CLAN TAG#URR8PPP
$begingroup$
So one of my past exam papers has the question:
Show:
$$sum_limitsn=0^infty fracsin(ntheta)2^n = fracsin(theta)5-4cos(theta)$$
My working:
$e^intheta = cos(ntheta) + isin(ntheta)$
So $sin(ntheta)$ is the imaginary part of $e^intheta$
Thus we get: $$Imleft(sum_n=0^infty left(frace^itheta2right)^nright)$$
Using the summation formula for infinite geometric series gives:
$$frac11-frace^itheta2$$
And after multiplying by the complex conjugate I get the imaginary part to be
$$frac2sin(theta)5-4cos(theta)$$
Any help would be great, thanks!
complex-numbers summation
$endgroup$
add a comment |
$begingroup$
So one of my past exam papers has the question:
Show:
$$sum_limitsn=0^infty fracsin(ntheta)2^n = fracsin(theta)5-4cos(theta)$$
My working:
$e^intheta = cos(ntheta) + isin(ntheta)$
So $sin(ntheta)$ is the imaginary part of $e^intheta$
Thus we get: $$Imleft(sum_n=0^infty left(frace^itheta2right)^nright)$$
Using the summation formula for infinite geometric series gives:
$$frac11-frace^itheta2$$
And after multiplying by the complex conjugate I get the imaginary part to be
$$frac2sin(theta)5-4cos(theta)$$
Any help would be great, thanks!
complex-numbers summation
$endgroup$
add a comment |
$begingroup$
So one of my past exam papers has the question:
Show:
$$sum_limitsn=0^infty fracsin(ntheta)2^n = fracsin(theta)5-4cos(theta)$$
My working:
$e^intheta = cos(ntheta) + isin(ntheta)$
So $sin(ntheta)$ is the imaginary part of $e^intheta$
Thus we get: $$Imleft(sum_n=0^infty left(frace^itheta2right)^nright)$$
Using the summation formula for infinite geometric series gives:
$$frac11-frace^itheta2$$
And after multiplying by the complex conjugate I get the imaginary part to be
$$frac2sin(theta)5-4cos(theta)$$
Any help would be great, thanks!
complex-numbers summation
$endgroup$
So one of my past exam papers has the question:
Show:
$$sum_limitsn=0^infty fracsin(ntheta)2^n = fracsin(theta)5-4cos(theta)$$
My working:
$e^intheta = cos(ntheta) + isin(ntheta)$
So $sin(ntheta)$ is the imaginary part of $e^intheta$
Thus we get: $$Imleft(sum_n=0^infty left(frace^itheta2right)^nright)$$
Using the summation formula for infinite geometric series gives:
$$frac11-frace^itheta2$$
And after multiplying by the complex conjugate I get the imaginary part to be
$$frac2sin(theta)5-4cos(theta)$$
Any help would be great, thanks!
complex-numbers summation
complex-numbers summation
edited yesterday
Zacky
5,3611754
5,3611754
asked Jan 1 at 23:29
PolynomialCPolynomialC
826
826
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Testing... if $theta=fracpi2$, the original series is $frac12^1-frac12^3+frac12^5-frac12^7+cdots =left(frac12-frac18right)left(1+frac12^4+frac12^8+cdotsright)$ which becomes $frac38cdotfrac1615=frac25$
The official answer claims $frac15-4cdot 0=frac15$. Yours claims $frac25-4cdot 0=frac25$. Your calculation is right and the official answer is wrong.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058986%2finfinite-summation-sum-limitsn-0-infty-frac-sinn-theta2n%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Testing... if $theta=fracpi2$, the original series is $frac12^1-frac12^3+frac12^5-frac12^7+cdots =left(frac12-frac18right)left(1+frac12^4+frac12^8+cdotsright)$ which becomes $frac38cdotfrac1615=frac25$
The official answer claims $frac15-4cdot 0=frac15$. Yours claims $frac25-4cdot 0=frac25$. Your calculation is right and the official answer is wrong.
$endgroup$
add a comment |
$begingroup$
Testing... if $theta=fracpi2$, the original series is $frac12^1-frac12^3+frac12^5-frac12^7+cdots =left(frac12-frac18right)left(1+frac12^4+frac12^8+cdotsright)$ which becomes $frac38cdotfrac1615=frac25$
The official answer claims $frac15-4cdot 0=frac15$. Yours claims $frac25-4cdot 0=frac25$. Your calculation is right and the official answer is wrong.
$endgroup$
add a comment |
$begingroup$
Testing... if $theta=fracpi2$, the original series is $frac12^1-frac12^3+frac12^5-frac12^7+cdots =left(frac12-frac18right)left(1+frac12^4+frac12^8+cdotsright)$ which becomes $frac38cdotfrac1615=frac25$
The official answer claims $frac15-4cdot 0=frac15$. Yours claims $frac25-4cdot 0=frac25$. Your calculation is right and the official answer is wrong.
$endgroup$
Testing... if $theta=fracpi2$, the original series is $frac12^1-frac12^3+frac12^5-frac12^7+cdots =left(frac12-frac18right)left(1+frac12^4+frac12^8+cdotsright)$ which becomes $frac38cdotfrac1615=frac25$
The official answer claims $frac15-4cdot 0=frac15$. Yours claims $frac25-4cdot 0=frac25$. Your calculation is right and the official answer is wrong.
answered Jan 1 at 23:43
jmerryjmerry
3,592514
3,592514
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058986%2finfinite-summation-sum-limitsn-0-infty-frac-sinn-theta2n%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown